
        
            
                
            
        

    Programming in Emacs Lisp
Table of Contents
	An Introduction to Programming in Emacs Lisp
	Preface
		Why Study Emacs Lisp?
	On Reading this Text
	For Whom This is Written
	Lisp History
	A Note for Novices
	Thank You


	1. List Processing
		1.1. Lisp Lists
		Numbers, Lists inside of Lists
	1.1.1. Lisp Atoms
	1.1.2. Whitespace in Lists
	1.1.3. GNU Emacs Helps You Type Lists


	1.2. Run a Program
	1.3. Generate an Error Message
	1.4. Symbol Names and Function Definitions
	1.5. The Lisp Interpreter
		Complications
	1.5.1. Byte Compiling


	1.6. Evaluation
		How the Lisp Interpreter Acts
	1.6.1. Evaluating Inner Lists


	1.7. Variables
		fill-column, an Example Variable
	1.7.1. Error Message for a Symbol Without a Function
	1.7.2. Error Message for a Symbol Without a Value


	1.8. Arguments
		1.8.1. Arguments' Data Types
	1.8.2. An Argument as the Value of a Variable or List
	1.8.3. Variable Number of Arguments
	1.8.4. Using the Wrong Type Object as an Argument
	1.8.5. The message Function


	1.9. Setting the Value of a Variable
		1.9.1. Using set
	1.9.2. Using setq
	1.9.3. Counting


	1.10. Summary
	1.11. Exercises


	2. Practicing Evaluation
		How to Evaluate
	2.1. Buffer Names
	2.2. Getting Buffers
	2.3. Switching Buffers
	2.4. Buffer Size and the Location of Point
	2.5. Exercise


	3. How To Write Function Definitions
		An Aside about Primitive Functions
	3.1. The defun Special Form
	3.2. Install a Function Definition
		The effect of installation
	3.2.1. Change a Function Definition


	3.3. Make a Function Interactive
		An Interactive multiply-by-seven, An Overview
	3.3.1. An Interactive multiply-by-seven


	3.4. Different Options for interactive
	3.5. Install Code Permanently
	3.6. let
		let Prevents Confusion
	3.6.1. The Parts of a let Expression
	3.6.2. Sample let Expression
	3.6.3. Uninitialized Variables in a let Statement


	3.7. The if Special Form
		if in more detail
	3.7.1. The type-of-animal Function in Detail


	3.8. If–then–else Expressions
	3.9. Truth and Falsehood in Emacs Lisp
		An explanation of nil


	3.10. save-excursion
		Point and Mark
	3.10.1. Template for a save-excursion Expression


	3.11. Review
	3.12. Exercises


	4. A Few Buffer–Related Functions
		4.1. Finding More Information
	4.2. A Simplified beginning-of-buffer Definition
	4.3. The Definition of mark-whole-buffer
		An overview of mark-whole-buffer
	4.3.1. Body of mark-whole-buffer


	4.4. The Definition of append-to-buffer
		An Overview of append-to-buffer
	4.4.1. The append-to-buffer Interactive Expression
	4.4.2. The Body of append-to-buffer
	4.4.3. save-excursion in append-to-buffer


	4.5. Review
	4.6. Exercises


	5. A Few More Complex Functions
		5.1. The Definition of copy-to-buffer
	5.2. The Definition of insert-buffer
		The Code for insert-buffer
	5.2.1. The Interactive Expression in insert-buffer
	5.2.2. The Body of the insert-buffer Function
	5.2.3. insert-buffer With an if Instead of an or
	5.2.4. The or in the Body
	5.2.5. The let Expression in insert-buffer
	5.2.6. New Body for insert-buffer


	5.3. Complete Definition of beginning-of-buffer
		5.3.1. Optional Arguments
	5.3.2. beginning-of-buffer with an Argument
	5.3.3. The Complete beginning-of-buffer


	5.4. Review
	5.5. optional Argument Exercise


	6. Narrowing and Widening
		The Advantages of Narrowing
	6.1. The save-restriction Special Form
	6.2. what-line
	6.3. Exercise with Narrowing


	7. car, cdr, cons: Fundamental Functions
		Strange Names
	7.1. car and cdr
	7.2. cons
		Build a list
	7.2.1. Find the Length of a List: length


	7.3. nthcdr
	7.4. nth
	7.5. setcar
	7.6. setcdr
	7.7. Exercise


	8. Cutting and Storing Text
		Storing Text in a List
	8.1. zap-to-char
		The Complete zap-to-char Implementation
	8.1.1. The interactive Expression
	8.1.2. The Body of zap-to-char
	8.1.3. The search-forward Function
	8.1.4. The progn Special Form
	8.1.5. Summing up zap-to-char


	8.2. kill-region
		The Complete kill-region Definition
	8.2.1. condition-case
	8.2.2. Lisp macro


	8.3. copy-region-as-kill
		The complete copy-region-as-kill function definition
	8.3.1. The Body of copy-region-as-kill


	8.4. Digression into C
	8.5. Initializing a Variable with defvar
		Seeing the Current Value of a Variable
	8.5.1. defvar and an asterisk


	8.6. Review
	8.7. Searching Exercises


	9. How Lists are Implemented
		Lists diagrammed
	9.1. Symbols as a Chest of Drawers
	9.2. Exercise


	10. Yanking Text Back
		10.1. Kill Ring Overview
	10.2. The kill-ring-yank-pointer Variable
	10.3. Exercises with yank and nthcdr


	11. Loops and Recursion
		11.1. while
		Looping with while
	11.1.1. A while Loop and a List
	11.1.2. An Example: print-elements-of-list
	11.1.3. A Loop with an Incrementing Counter
	Details of an Incrementing Loop
	11.1.4. Loop with a Decrementing Counter


	11.2. Save your time: dolist and dotimes
	11.3. Recursion
		11.3.1. Building Robots: Extending the Metaphor
	11.3.2. The Parts of a Recursive Definition
	11.3.3. Recursion with a List
	11.3.4. Recursion in Place of a Counter
	11.3.5. Recursion Example Using cond
	11.3.6. Recursive Patterns
	11.3.7. Recursion without Deferments
	11.3.8. No Deferment Solution


	11.4. Looping Exercise


	12. Regular Expression Searches
		12.1. The Regular Expression for sentence-end
	12.2. The re-search-forward Function
	12.3. forward-sentence
		Complete forward-sentence function definition
	The while loops
	The regular expression search


	12.4. forward-paragraph: a Goldmine of Functions
		Shortened forward-paragraph function definition
	The let* expression
	The forward motion while loop


	12.5. Create Your Own TAGS File
	12.6. Review
	12.7. Exercises with re-search-forward


	13. Counting: Repetition and Regexps
		Counting words
	13.1. The count-words-region Function
		Designing count-words-region
	13.1.1. The Whitespace Bug in count-words-region


	13.2. Count Words Recursively
	13.3. Exercise: Counting Punctuation


	14. Counting Words in a defun
		Divide and Conquer
	14.1. What to Count?
	14.2. What Constitutes a Word or Symbol?
	14.3. The count-words-in-defun Function
	14.4. Count Several defuns Within a File
	14.5. Find a File
	14.6. lengths-list-file in Detail
	14.7. Count Words in defuns in Different Files
		Determine the lengths of defuns
	14.7.1. The append Function


	14.8. Recursively Count Words in Different Files
	14.9. Prepare the Data for Display in a Graph
		The Data for Display in Detail
	14.9.1. Sorting Lists
	14.9.2. Making a List of Files
	14.9.3. Counting function definitions




	15. Readying a Graph
		Printing the Columns of a Graph
	15.1. The graph-body-print Function
	15.2. The recursive-graph-body-print Function
	15.3. Need for Printed Axes
	15.4. Exercise


	16. Your .emacs File
		Emacs' Default Configuration
	16.1. Site-wide Initialization Files
	16.2. Specifying Variables using defcustom
	16.3. Beginning a .emacs File
	16.4. Text and Auto Fill Mode
	16.5. Mail Aliases
	16.6. Indent Tabs Mode
	16.7. Some Keybindings
	16.8. Keymaps
	16.9. Loading Files
	16.10. Autoloading
	16.11. A Simple Extension: line-to-top-of-window
	16.12. X11 Colors
	16.13. Miscellaneous Settings for a .emacs File
	16.14. A Modified Mode Line


	17. Debugging
		17.1. debug
	17.2. debug-on-entry
	17.3. debug-on-quit and (debug)
	17.4. The edebug Source Level Debugger
	17.5. Debugging Exercises


	18. Conclusion
	A. The the-the Function
	B. Handling the Kill Ring
		What the Kill Ring Does
	The current-kill Function
		The code for current-kill
	current-kill in Outline


	yank
	yank-pop
	The ring.el File


	C. A Graph with Labelled Axes
		Labelled Example Graph
	The print-graph Varlist
	The print-Y-axis Function
		The print-Y-axis Function in Detail
	What height should the label be?
	Side Trip: Compute a Remainder
	Construct a Y Axis Element
	Create a Y Axis Column
	The Not Quite Final Version of print-Y-axis


	The print-X-axis Function
		Similarities and differences
	X Axis Tic Marks


	Printing the Whole Graph
		Changes for the Final Version
	Testing print-graph
	Graphing Numbers of Words and Symbols
	A lambda Expression: Useful Anonymity
	The mapcar Function
	Another Bug … Most Insidious
	The Printed Graph




	D. Free Software and Free Manuals
	E. GNU Free Documentation License
	Index
		Index


	About the Author


Programming in Emacs Lisp

This is an Introduction to Programming in Emacs Lisp, for
people who are not programmers.
Edition 3.10, 28 October 2009
Copyright © 1990, 1991, 1992, 1993, 1994, 1995, 1997, 2001,
   2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
   Free Software Foundation, Inc.
Published by the:
GNU Press,                          Website: http://www.gnupress.org
a division of the                   General: press@gnu.org
Free Software Foundation, Inc.      Orders:  sales@gnu.org
51 Franklin Street, Fifth Floor     Tel: +1 (617) 542-5942
Boston, MA 02110-1301 USA           Fax: +1 (617) 542-2652

ISBN 1-882114-43-4
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; there
being no Invariant Section, with the Front-Cover Texts being “A GNU
Manual”, and with the Back-Cover Texts as in (a) below.  A copy of
the license is included in the section entitled “GNU Free
Documentation License”.
(a) The FSF's Back-Cover Text is: “You have the freedom to
copy and modify this GNU manual.  Buying copies from the FSF
supports it in developing GNU and promoting software freedom.”






Chapter . An Introduction to Programming in Emacs Lisp



This is an Introduction to Programming in Emacs Lisp, for
people who are not programmers.
Edition 3.10, 28 October 2009
Copyright © 1990, 1991, 1992, 1993, 1994, 1995, 1997, 2001,
   2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
   Free Software Foundation, Inc.
Published by the:

GNU Press,                          Website: http://www.gnupress.org
a division of the                   General: press@gnu.org
Free Software Foundation, Inc.      Orders:  sales@gnu.org
51 Franklin Street, Fifth Floor     Tel: +1 (617) 542-5942
Boston, MA 02110-1301 USA           Fax: +1 (617) 542-2652

ISBN 1-882114-43-4
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; there
being no Invariant Section, with the Front-Cover Texts being “A GNU
Manual”, and with the Back-Cover Texts as in (a) below.  A copy of
the license is included in the section entitled “GNU Free
Documentation License”.
(a) The FSF's Back-Cover Text is: “You have the freedom to
copy and modify this GNU manual.  Buying copies from the FSF
supports it in developing GNU and promoting software freedom.”
This master menu first lists each chapter and index; then it lists
every node in every chapter.

Chapter . Preface



Most of the GNU Emacs integrated environment is written in the programming
language called Emacs Lisp.  The code written in this programming
language is the software—the sets of instructions—that tell the
computer what to do when you give it commands.  Emacs is designed so
that you can write new code in Emacs Lisp and easily install it as an
extension to the editor.
(GNU Emacs is sometimes called an “extensible editor”, but it does
much more than provide editing capabilities.  It is better to refer to
Emacs as an “extensible computing environment”.  However, that
phrase is quite a mouthful.  It is easier to refer to Emacs simply as
an editor.  Moreover, everything you do in Emacs—find the Mayan date
and phases of the moon, simplify polynomials, debug code, manage
files, read letters, write books—all these activities are kinds of
editing in the most general sense of the word.)
Why Study Emacs Lisp?



Although Emacs Lisp is usually thought of in association only with Emacs,
it is a full computer programming language.  You can use Emacs Lisp as
you would any other programming language.
Perhaps you want to understand programming; perhaps you want to extend
Emacs; or perhaps you want to become a programmer.  This introduction to
Emacs Lisp is designed to get you started: to guide you in learning the
fundamentals of programming, and more importantly, to show you how you
can teach yourself to go further.


On Reading this Text



All through this document, you will see little sample programs you can
run inside of Emacs.  If you read this document in Info inside of GNU
Emacs, you can run the programs as they appear.  (This is easy to do and
is explained when the examples are presented.)  Alternatively, you can
read this introduction as a printed book while sitting beside a computer
running Emacs.  (This is what I like to do; I like printed books.)  If
you don't have a running Emacs beside you, you can still read this book,
but in this case, it is best to treat it as a novel or as a travel guide
to a country not yet visited: interesting, but not the same as being
there.
Much of this introduction is dedicated to walk-throughs or guided tours
of code used in GNU Emacs.  These tours are designed for two purposes:
first, to give you familiarity with real, working code (code you use
every day); and, second, to give you familiarity with the way Emacs
works.  It is interesting to see how a working environment is
implemented.
Also, I
hope that you will pick up the habit of browsing through source code.
You can learn from it and mine it for ideas.  Having GNU Emacs is like
having a dragon's cave of treasures.
In addition to learning about Emacs as an editor and Emacs Lisp as a
programming language, the examples and guided tours will give you an
opportunity to get acquainted with Emacs as a Lisp programming
environment.  GNU Emacs supports programming and provides tools that
you will want to become comfortable using, such as M-. (the key
which invokes the find-tag command).  You will also learn about
buffers and other objects that are part of the environment.
Learning about these features of Emacs is like learning new routes
around your home town.
Finally, I hope to convey some of the skills for using Emacs to
learn aspects of programming that you don't know.  You can often use
Emacs to help you understand what puzzles you or to find out how to do
something new.  This self-reliance is not only a pleasure, but an
advantage.

For Whom This is Written



This text is written as an elementary introduction for people who are
not programmers.  If you are a programmer, you may not be satisfied with
this primer.  The reason is that you may have become expert at reading
reference manuals and be put off by the way this text is organized.
An expert programmer who reviewed this text said to me:
I prefer to learn from reference manuals.  I “dive into” each
paragraph, and “come up for air” between paragraphs.
When I get to the end of a paragraph, I assume that that subject is
done, finished, that I know everything I need (with the
possible exception of the case when the next paragraph starts talking
about it in more detail).  I expect that a well written reference manual
will not have a lot of redundancy, and that it will have excellent
pointers to the (one) place where the information I want is.


This introduction is not written for this person!
Firstly, I try to say everything at least three times: first, to
introduce it; second, to show it in context; and third, to show it in a
different context, or to review it.
Secondly, I hardly ever put all the information about a subject in one
place, much less in one paragraph.  To my way of thinking, that imposes
too heavy a burden on the reader.  Instead I try to explain only what
you need to know at the time.  (Sometimes I include a little extra
information so you won't be surprised later when the additional
information is formally introduced.)
When you read this text, you are not expected to learn everything the
first time.  Frequently, you need only make, as it were, a `nodding
acquaintance' with some of the items mentioned.  My hope is that I have
structured the text and given you enough hints that you will be alert to
what is important, and concentrate on it.
You will need to “dive into” some paragraphs; there is no other way
to read them.  But I have tried to keep down the number of such
paragraphs.  This book is intended as an approachable hill, rather than
as a daunting mountain.
This introduction to Programming in Emacs Lisp has a companion
document,
See section ``The GNU Emacs Lisp Reference Manual'' in The GNU Emacs Lisp Reference Manual.
The reference manual has more detail than this introduction.  In the
reference manual, all the information about one topic is concentrated
in one place.  You should turn to it if you are like the programmer
quoted above.  And, of course, after you have read this
Introduction, you will find the Reference Manual useful
when you are writing your own programs.

Lisp History




Lisp was first developed in the late 1950s at the Massachusetts
Institute of Technology for research in artificial intelligence.  The
great power of the Lisp language makes it superior for other purposes as
well, such as writing editor commands and integrated environments.
GNU Emacs Lisp is largely inspired by Maclisp, which was written at MIT
in the 1960s.  It is somewhat inspired by Common Lisp, which became a
standard in the 1980s.  However, Emacs Lisp is much simpler than Common
Lisp.  (The standard Emacs distribution contains an optional extensions
file, cl.el, that adds many Common Lisp features to Emacs Lisp.)

A Note for Novices



If you don't know GNU Emacs, you can still read this document
profitably.  However, I recommend you learn Emacs, if only to learn to
move around your computer screen.  You can teach yourself how to use
Emacs with the on-line tutorial.  To use it, type C-h t.  (This
means you press and release the CTRL key and the h at the
same time, and then press and release t.)
Also, I often refer to one of Emacs' standard commands by listing the
keys which you press to invoke the command and then giving the name of
the command in parentheses, like this: M-C-\
(indent-region).  What this means is that the
indent-region command is customarily invoked by typing
M-C-\.  (You can, if you wish, change the keys that are typed to
invoke the command; this is called rebinding.  See Keymaps.)  The abbreviation M-C-\ means that you type your
META key, CTRL key and \ key all at the same time.
(On many modern keyboards the META key is labelled
ALT.)
Sometimes a combination like this is called a keychord, since it is
similar to the way you play a chord on a piano.  If your keyboard does
not have a META key, the ESC key prefix is used in place
of it.  In this case, M-C-\ means that you press and release your
ESC key and then type the CTRL key and the \ key at
the same time.  But usually M-C-\ means press the CTRL key
along with the key that is labelled ALT and, at the same time,
press the \ key.
In addition to typing a lone keychord, you can prefix what you type
with C-u, which is called the `universal argument'.  The
C-u keychord passes an argument to the subsequent command.
Thus, to indent a region of plain text by 6 spaces, mark the region,
and then type C-u 6 M-C-\.  (If you do not specify a number,
Emacs either passes the number 4 to the command or otherwise runs the
command differently than it would otherwise.)  See See section ``Numeric Arguments'' in The GNU Emacs Manual.
If you are reading this in Info using GNU Emacs, you can read through
this whole document just by pressing the space bar, SPC.
(To learn about Info, type C-h i and then select Info.)
A note on terminology:  when I use the word Lisp alone, I often am
referring to the various dialects of Lisp in general, but when I speak
of Emacs Lisp, I am referring to GNU Emacs Lisp in particular.

Thank You



My thanks to all who helped me with this book.  My especial thanks to
Jim Blandy, Noah Friedman, Jim Kingdon, Roland
McGrath, Frank Ritter, Randy Smith, Richard M.
Stallman, and Melissa Weisshaus.  My thanks also go to both
Philip Johnson and David Stampe for their patient
encouragement.  My mistakes are my own.
Robert J. Chassell
<bob@gnu.org>

Chapter 1. List Processing



To the untutored eye, Lisp is a strange programming language.  In Lisp
code there are parentheses everywhere.  Some people even claim that
the name stands for `Lots of Isolated Silly Parentheses'.  But the
claim is unwarranted.  Lisp stands for LISt Processing, and the
programming language handles lists (and lists of lists) by
putting them between parentheses.  The parentheses mark the boundaries
of the list.  Sometimes a list is preceded by a single apostrophe or
quotation mark, ‘'’[1]  Lists are the basis of Lisp.
Lisp Lists




In Lisp, a list looks like this: '(rose violet daisy buttercup).
This list is preceded by a single apostrophe.  It could just as well be
written as follows, which looks more like the kind of list you are likely
to be familiar with:

'(rose
  violet
  daisy
  buttercup)

The elements of this list are the names of the four different flowers,
separated from each other by whitespace and surrounded by parentheses,
like flowers in a field with a stone wall around them.

Numbers, Lists inside of Lists



Lists can also have numbers in them, as in this list: (+ 2 2).
This list has a plus-sign, ‘+’, followed by two ‘2’s, each
separated by whitespace.
In Lisp, both data and programs are represented the same way; that is,
they are both lists of words, numbers, or other lists, separated by
whitespace and surrounded by parentheses.  (Since a program looks like
data, one program may easily serve as data for another; this is a very
powerful feature of Lisp.)  (Incidentally, these two parenthetical
remarks are not Lisp lists, because they contain ‘;’ and
‘.’ as punctuation marks.)
Here is another list, this time with a list inside of it:

'(this list has (a list inside of it))

The components of this list are the words ‘this’, ‘list’,
‘has’, and the list ‘(a list inside of it)’.  The interior
list is made up of the words ‘a’, ‘list’, ‘inside’,
‘of’, ‘it’.

Lisp Atoms




In Lisp, what we have been calling words are called atoms.  This
term comes from the historical meaning of the word atom, which means
`indivisible'.  As far as Lisp is concerned, the words we have been
using in the lists cannot be divided into any smaller parts and still
mean the same thing as part of a program; likewise with numbers and
single character symbols like ‘+’.  On the other hand, unlike an
ancient atom, a list can be split into parts.  (See car cdr &amp; cons Fundamental Functions.)
In a list, atoms are separated from each other by whitespace.  They can be
right next to a parenthesis.
Technically speaking, a list in Lisp consists of parentheses surrounding
atoms separated by whitespace or surrounding other lists or surrounding
both atoms and other lists.  A list can have just one atom in it or
have nothing in it at all.  A list with nothing in it looks like this:
(), and is called the empty list.  Unlike anything else, an
empty list is considered both an atom and a list at the same time.
The printed representation of both atoms and lists are called
symbolic expressions or, more concisely, s-expressions.
The word expression by itself can refer to either the printed
representation, or to the atom or list as it is held internally in the
computer.  Often, people use the term expression
indiscriminately.  (Also, in many texts, the word form is used
as a synonym for expression.)
Incidentally, the atoms that make up our universe were named such when
they were thought to be indivisible; but it has been found that physical
atoms are not indivisible.  Parts can split off an atom or it can
fission into two parts of roughly equal size.  Physical atoms were named
prematurely, before their truer nature was found.  In Lisp, certain
kinds of atom, such as an array, can be separated into parts; but the
mechanism for doing this is different from the mechanism for splitting a
list.  As far as list operations are concerned, the atoms of a list are
unsplittable.
As in English, the meanings of the component letters of a Lisp atom
are different from the meaning the letters make as a word.  For
example, the word for the South American sloth, the ‘ai’, is
completely different from the two words, ‘a’, and ‘i’.
There are many kinds of atom in nature but only a few in Lisp: for
example, numbers, such as 37, 511, or 1729, and symbols, such
as ‘+’, ‘foo’, or ‘forward-line’.  The words we have
listed in the examples above are all symbols.  In everyday Lisp
conversation, the word “atom” is not often used, because programmers
usually try to be more specific about what kind of atom they are dealing
with.  Lisp programming is mostly about symbols (and sometimes numbers)
within lists.  (Incidentally, the preceding three word parenthetical
remark is a proper list in Lisp, since it consists of atoms, which in
this case are symbols, separated by whitespace and enclosed by
parentheses, without any non-Lisp punctuation.)
Text between double quotation marks—even sentences or
paragraphs—is also an atom.  Here is an example:


'(this list includes "text between quotation marks.")

In Lisp, all of the quoted text including the punctuation mark and the
blank spaces is a single atom.  This kind of atom is called a
string (for `string of characters') and is the sort of thing that
is used for messages that a computer can print for a human to read.
Strings are a different kind of atom than numbers or symbols and are
used differently.

Whitespace in Lists




The amount of whitespace in a list does not matter.  From the point of view
of the Lisp language,

'(this list
   looks like this)

is exactly the same as this:

'(this list looks like this)

Both examples show what to Lisp is the same list, the list made up of
the symbols ‘this’, ‘list’, ‘looks’, ‘like’, and
‘this’ in that order.
Extra whitespace and newlines are designed to make a list more readable
by humans.  When Lisp reads the expression, it gets rid of all the extra
whitespace (but it needs to have at least one space between atoms in
order to tell them apart.)
Odd as it seems, the examples we have seen cover almost all of what Lisp
lists look like!  Every other list in Lisp looks more or less like one
of these examples, except that the list may be longer and more complex.
In brief, a list is between parentheses, a string is between quotation
marks, a symbol looks like a word, and a number looks like a number.
(For certain situations, square brackets, dots and a few other special
characters may be used; however, we will go quite far without them.)

GNU Emacs Helps You Type Lists




When you type a Lisp expression in GNU Emacs using either Lisp
Interaction mode or Emacs Lisp mode, you have available to you several
commands to format the Lisp expression so it is easy to read.  For
example, pressing the TAB key automatically indents the line the
cursor is on by the right amount.  A command to properly indent the
code in a region is customarily bound to M-C-\.  Indentation is
designed so that you can see which elements of a list belong to which
list—elements of a sub-list are indented more than the elements of
the enclosing list.
In addition, when you type a closing parenthesis, Emacs momentarily
jumps the cursor back to the matching opening parenthesis, so you can
see which one it is.  This is very useful, since every list you type
in Lisp must have its closing parenthesis match its opening
parenthesis.  (See See section ``Major Modes'' in The GNU Emacs Manual, for more information about Emacs' modes.)




[1] The single apostrophe or quotation
mark is an abbreviation for the function quote; you need not
think about functions now; functions are defined in Generate an Error Message.



Run a Program




A list in Lisp—any list—is a program ready to run.  If you run it
(for which the Lisp jargon is evaluate), the computer will do one
of three things: do nothing except return to you the list itself; send
you an error message; or, treat the first symbol in the list as a
command to do something.  (Usually, of course, it is the last of these
three things that you really want!)
The single apostrophe, ', that I put in front of some of the
example lists in preceding sections is called a quote; when it
precedes a list, it tells Lisp to do nothing with the list, other than
take it as it is written.  But if there is no quote preceding a list,
the first item of the list is special: it is a command for the computer
to obey.  (In Lisp, these commands are called functions.)  The list
(+ 2 2) shown above did not have a quote in front of it, so Lisp
understands that the + is an instruction to do something with the
rest of the list: add the numbers that follow.
If you are reading this inside of GNU Emacs in Info, here is how you can
evaluate such a list:  place your cursor immediately after the right
hand parenthesis of the following list and then type C-x C-e:

(+ 2 2)

You will see the number 4 appear in the echo area.  (In the
jargon, what you have just done is “evaluate the list.”  The echo area
is the line at the bottom of the screen that displays or “echoes”
text.)  Now try the same thing with a quoted list:  place the cursor
right after the following list and type C-x C-e:

'(this is a quoted list)

You will see (this is a quoted list) appear in the echo area.
In both cases, what you are doing is giving a command to the program
inside of GNU Emacs called the Lisp interpreter—giving the
interpreter a command to evaluate the expression.  The name of the Lisp
interpreter comes from the word for the task done by a human who comes
up with the meaning of an expression—who “interprets” it.
You can also evaluate an atom that is not part of a list—one that is
not surrounded by parentheses; again, the Lisp interpreter translates
from the humanly readable expression to the language of the computer.
But before discussing this (see the section called “Variables”), we will discuss what the
Lisp interpreter does when you make an error.

Generate an Error Message




Partly so you won't worry if you do it accidentally, we will now give
a command to the Lisp interpreter that generates an error message.
This is a harmless activity; and indeed, we will often try to generate
error messages intentionally.  Once you understand the jargon, error
messages can be informative.  Instead of being called “error”
messages, they should be called “help” messages.  They are like
signposts to a traveller in a strange country; deciphering them can be
hard, but once understood, they can point the way.
The error message is generated by a built-in GNU Emacs debugger.  We
will `enter the debugger'.  You get out of the debugger by typing q.
What we will do is evaluate a list that is not quoted and does not
have a meaningful command as its first element.  Here is a list almost
exactly the same as the one we just used, but without the single-quote
in front of it.  Position the cursor right after it and type C-x
C-e:

(this is an unquoted list)

What you see depends on which version of Emacs you are running.  GNU
Emacs version 22 provides more information than version 20 and before.
First, the more recent result of generating an error; then the
earlier, version 20 result.
In GNU Emacs version 22, a *Backtrace* window will open up and
you will see the following in it:

---------- Buffer: *Backtrace* ----------
Debugger entered--Lisp error: (void-function this)
  (this is an unquoted list)
  eval((this is an unquoted list))
  eval-last-sexp-1(nil)
  eval-last-sexp(nil)
  call-interactively(eval-last-sexp)
---------- Buffer: *Backtrace* ----------

Your cursor will be in this window (you may have to wait a few seconds
before it becomes visible).  To quit the debugger and make the
debugger window go away, type:

q

Please type q right now, so you become confident that you can
get out of the debugger.  Then, type C-x C-e again to re-enter
it.
Based on what we already know, we can almost read this error message.
You read the *Backtrace* buffer from the bottom up; it tells
you what Emacs did.  When you typed C-x C-e, you made an
interactive call to the command eval-last-sexp.  eval is
an abbreviation for `evaluate' and sexp is an abbreviation for
`symbolic expression'.  The command means `evaluate last symbolic
expression', which is the expression just before your cursor.
Each line above tells you what the Lisp interpreter evaluated next.
The most recent action is at the top.  The buffer is called the
*Backtrace* buffer because it enables you to track Emacs
backwards.
At the top of the *Backtrace* buffer, you see the line:

Debugger entered--Lisp error: (void-function this)

The Lisp interpreter tried to evaluate the first atom of the list, the
word ‘this’.  It is this action that generated the error message
‘void-function this’.
The message contains the words ‘void-function’ and ‘this’.
The word ‘function’ was mentioned once before.  It is a very
important word.  For our purposes, we can define it by saying that a
function is a set of instructions to the computer that tell the
computer to do something.
Now we can begin to understand the error message: ‘void-function
this’.  The function (that is, the word ‘this’) does not have a
definition of any set of instructions for the computer to carry out.
The slightly odd word, ‘void-function’, is designed to cover the
way Emacs Lisp is implemented, which is that when a symbol does not
have a function definition attached to it, the place that should
contain the instructions is `void'.
On the other hand, since we were able to add 2 plus 2 successfully, by
evaluating (+ 2 2), we can infer that the symbol + must
have a set of instructions for the computer to obey and those
instructions must be to add the numbers that follow the +.
In GNU Emacs version 20, and in earlier versions, you will see only
one line of error message; it will appear in the echo area and look
like this:

Symbol's function definition is void: this

(Also, your terminal may beep at you—some do, some don't; and others
blink.  This is just a device to get your attention.)  The message goes
away as soon as you type another key, even just to move the cursor.
We know the meaning of the word ‘Symbol’.  It refers to the first
atom of the list, the word ‘this’.  The word ‘function’
refers to the instructions that tell the computer what to do.
(Technically, the symbol tells the computer where to find the
instructions, but this is a complication we can ignore for the
moment.)
The error message can be understood: ‘Symbol's function
definition is void: this’.  The symbol (that is, the word
‘this’) lacks instructions for the computer to carry out.

Symbol Names and Function Definitions




We can articulate another characteristic of Lisp based on what we have
discussed so far—an important characteristic: a symbol, like
+, is not itself the set of instructions for the computer to
carry out.  Instead, the symbol is used, perhaps temporarily, as a way
of locating the definition or set of instructions.  What we see is the
name through which the instructions can be found.  Names of people
work the same way.  I can be referred to as ‘Bob’; however, I am
not the letters ‘B’, ‘o’, ‘b’ but am, or was, the
consciousness consistently associated with a particular life-form.
The name is not me, but it can be used to refer to me.
In Lisp, one set of instructions can be attached to several names.
For example, the computer instructions for adding numbers can be
linked to the symbol plus as well as to the symbol +
(and are in some dialects of Lisp).  Among humans, I can be referred
to as ‘Robert’ as well as ‘Bob’ and by other words as well.
On the other hand, a symbol can have only one function definition
attached to it at a time.  Otherwise, the computer would be confused as
to which definition to use.  If this were the case among people, only
one person in the world could be named ‘Bob’.  However, the function
definition to which the name refers can be changed readily.
(See Install a Function Definition.)
Since Emacs Lisp is large, it is customary to name symbols in a way
that identifies the part of Emacs to which the function belongs.
Thus, all the names for functions that deal with Texinfo start with
‘texinfo-’ and those for functions that deal with reading mail
start with ‘rmail-’.

The Lisp Interpreter




Based on what we have seen, we can now start to figure out what the
Lisp interpreter does when we command it to evaluate a list.
First, it looks to see whether there is a quote before the list; if
there is, the interpreter just gives us the list.  On the other
hand, if there is no quote, the interpreter looks at the first element
in the list and sees whether it has a function definition.  If it does,
the interpreter carries out the instructions in the function definition.
Otherwise, the interpreter prints an error message.
This is how Lisp works.  Simple.  There are added complications which we
will get to in a minute, but these are the fundamentals.  Of course, to
write Lisp programs, you need to know how to write function definitions
and attach them to names, and how to do this without confusing either
yourself or the computer.
Complications



Now, for the first complication.  In addition to lists, the Lisp
interpreter can evaluate a symbol that is not quoted and does not have
parentheses around it.  The Lisp interpreter will attempt to determine
the symbol's value as a variable.  This situation is described
in the section on variables.  (See the section called “Variables”.)
The second complication occurs because some functions are unusual and do
not work in the usual manner.  Those that don't are called special
forms.  They are used for special jobs, like defining a function, and
there are not many of them.  In the next few chapters, you will be
introduced to several of the more important special forms.
The third and final complication is this: if the function that the
Lisp interpreter is looking at is not a special form, and if it is part
of a list, the Lisp interpreter looks to see whether the list has a list
inside of it.  If there is an inner list, the Lisp interpreter first
figures out what it should do with the inside list, and then it works on
the outside list.  If there is yet another list embedded inside the
inner list, it works on that one first, and so on.  It always works on
the innermost list first.  The interpreter works on the innermost list
first, to evaluate the result of that list.  The result may be
used by the enclosing expression.
Otherwise, the interpreter works left to right, from one expression to
the next.

Byte Compiling




One other aspect of interpreting: the Lisp interpreter is able to
interpret two kinds of entity: humanly readable code, on which we will
focus exclusively, and specially processed code, called byte
compiled code, which is not humanly readable.  Byte compiled code
runs faster than humanly readable code.
You can transform humanly readable code into byte compiled code by
running one of the compile commands such as byte-compile-file.
Byte compiled code is usually stored in a file that ends with a
.elc extension rather than a .el extension.  You will
see both kinds of file in the emacs/lisp directory; the files
to read are those with .el extensions.
As a practical matter, for most things you might do to customize or
extend Emacs, you do not need to byte compile; and I will not discuss
the topic here.  See See section ``Byte Compilation'' in The GNU Emacs Lisp Reference Manual, for a full description of byte
compilation.


Evaluation




When the Lisp interpreter works on an expression, the term for the
activity is called evaluation.  We say that the interpreter
`evaluates the expression'.  I've used this term several times before.
The word comes from its use in everyday language, `to ascertain the
value or amount of; to appraise', according to Webster's New
Collegiate Dictionary.
How the Lisp Interpreter Acts



After evaluating an expression, the Lisp interpreter will most likely
return the value that the computer produces by carrying out the
instructions it found in the function definition, or perhaps it will
give up on that function and produce an error message.  (The interpreter
may also find itself tossed, so to speak, to a different function or it
may attempt to repeat continually what it is doing for ever and ever in
what is called an `infinite loop'.  These actions are less common; and
we can ignore them.)  Most frequently, the interpreter returns a value.
At the same time the interpreter returns a value, it may do something
else as well, such as move a cursor or copy a file; this other kind of
action is called a side effect.  Actions that we humans think are
important, such as printing results, are often “side effects” to the
Lisp interpreter.  The jargon can sound peculiar, but it turns out that
it is fairly easy to learn to use side effects.
In summary, evaluating a symbolic expression most commonly causes the
Lisp interpreter to return a value and perhaps carry out a side effect;
or else produce an error.

Evaluating Inner Lists




If evaluation applies to a list that is inside another list, the outer
list may use the value returned by the first evaluation as information
when the outer list is evaluated.  This explains why inner expressions
are evaluated first: the values they return are used by the outer
expressions.
We can investigate this process by evaluating another addition example.
Place your cursor after the following expression and type C-x C-e:

(+ 2 (+ 3 3))

The number 8 will appear in the echo area.
What happens is that the Lisp interpreter first evaluates the inner
expression, (+ 3 3), for which the value 6 is returned; then it
evaluates the outer expression as if it were written (+ 2 6), which
returns the value 8.  Since there are no more enclosing expressions to
evaluate, the interpreter prints that value in the echo area.
Now it is easy to understand the name of the command invoked by the
keystrokes C-x C-e: the name is eval-last-sexp.  The
letters sexp are an abbreviation for `symbolic expression', and
eval is an abbreviation for `evaluate'.  The command means
`evaluate last symbolic expression'.
As an experiment, you can try evaluating the expression by putting the
cursor at the beginning of the next line immediately following the
expression, or inside the expression.
Here is another copy of the expression:

(+ 2 (+ 3 3))

If you place the cursor at the beginning of the blank line that
immediately follows the expression and type C-x C-e, you will
still get the value 8 printed in the echo area.  Now try putting the
cursor inside the expression.  If you put it right after the next to
last parenthesis (so it appears to sit on top of the last parenthesis),
you will get a 6 printed in the echo area!  This is because the command
evaluates the expression (+ 3 3).
Now put the cursor immediately after a number.  Type C-x C-e and
you will get the number itself.  In Lisp, if you evaluate a number, you
get the number itself—this is how numbers differ from symbols.  If you
evaluate a list starting with a symbol like +, you will get a
value returned that is the result of the computer carrying out the
instructions in the function definition attached to that name.  If a
symbol by itself is evaluated, something different happens, as we will
see in the next section.


Variables




In Emacs Lisp, a symbol can have a value attached to it just as it can
have a function definition attached to it.  The two are different.
The function definition is a set of instructions that a computer will
obey.  A value, on the other hand, is something, such as number or a
name, that can vary (which is why such a symbol is called a variable).
The value of a symbol can be any expression in Lisp, such as a symbol,
number, list, or string.  A symbol that has a value is often called a
variable.
A symbol can have both a function definition and a value attached to
it at the same time.  Or it can have just one or the other.
The two are separate.  This is somewhat similar
to the way the name Cambridge can refer to the city in Massachusetts
and have some information attached to the name as well, such as
“great programming center”.
Another way to think about this is to imagine a symbol as being a chest
of drawers.  The function definition is put in one drawer, the value in
another, and so on.  What is put in the drawer holding the value can be
changed without affecting the contents of the drawer holding the
function definition, and vice-verse.
fill-column, an Example Variable



The variable fill-column illustrates a symbol with a value
attached to it: in every GNU Emacs buffer, this symbol is set to some
value, usually 72 or 70, but sometimes to some other value.  To find the
value of this symbol, evaluate it by itself.  If you are reading this in
Info inside of GNU Emacs, you can do this by putting the cursor after
the symbol and typing C-x C-e:

fill-column

After I typed C-x C-e, Emacs printed the number 72 in my echo
area.  This is the value for which fill-column is set for me as I
write this.  It may be different for you in your Info buffer.  Notice
that the value returned as a variable is printed in exactly the same way
as the value returned by a function carrying out its instructions.  From
the point of view of the Lisp interpreter, a value returned is a value
returned.  What kind of expression it came from ceases to matter once
the value is known.
A symbol can have any value attached to it or, to use the jargon, we can
bind the variable to a value: to a number, such as 72; to a
string, "such as this"; to a list, such as (spruce pine
oak); we can even bind a variable to a function definition.
A symbol can be bound to a value in several ways.  See Setting the Value of a Variable, for information about one way to do
this.

Error Message for a Symbol Without a Function




When we evaluated fill-column to find its value as a variable,
we did not place parentheses around the word.  This is because we did
not intend to use it as a function name.
If fill-column were the first or only element of a list, the
Lisp interpreter would attempt to find the function definition
attached to it.  But fill-column has no function definition.
Try evaluating this:

(fill-column)

In GNU Emacs version 22, you will create a *Backtrace* buffer
that says:

---------- Buffer: *Backtrace* ----------
Debugger entered--Lisp error: (void-function fill-column)
  (fill-column)
  eval((fill-column))
  eval-last-sexp-1(nil)
  eval-last-sexp(nil)
  call-interactively(eval-last-sexp)
---------- Buffer: *Backtrace* ----------

(Remember, to quit the debugger and make the debugger window go away,
type q in the *Backtrace* buffer.)

Error Message for a Symbol Without a Value




If you attempt to evaluate a symbol that does not have a value bound to
it, you will receive an error message.  You can see this by
experimenting with our 2 plus 2 addition.  In the following expression,
put your cursor right after the +, before the first number 2,
type C-x C-e:

(+ 2 2)

In GNU Emacs 22, you will create a *Backtrace* buffer that
says:

---------- Buffer: *Backtrace* ----------
Debugger entered--Lisp error: (void-variable +)
  eval(+)
  eval-last-sexp-1(nil)
  eval-last-sexp(nil)
  call-interactively(eval-last-sexp)
---------- Buffer: *Backtrace* ----------

(As with the other times we entered the debugger, you can quit by
typing q in the *Backtrace* buffer.)
This backtrace is different from the very first error message we saw,
which said, ‘Debugger entered--Lisp error: (void-function this)’.
In this case, the function does not have a value as a variable; while
in the other error message, the function (the word `this') did not
have a definition.
In this experiment with the +, what we did was cause the Lisp
interpreter to evaluate the + and look for the value of the
variable instead of the function definition.  We did this by placing the
cursor right after the symbol rather than after the parenthesis of the
enclosing list as we did before.  As a consequence, the Lisp interpreter
evaluated the preceding s-expression, which in this case was the
+ by itself.
Since + does not have a value bound to it, just the function
definition, the error message reported that the symbol's value as a
variable was void.


Arguments




To see how information is passed to functions, let's look again at
our old standby, the addition of two plus two.  In Lisp, this is written
as follows:

(+ 2 2)

If you evaluate this expression, the number 4 will appear in your echo
area.  What the Lisp interpreter does is add the numbers that follow
the +.
The numbers added by + are called the arguments of the
function +.  These numbers are the information that is given to
or passed to the function.
The word `argument' comes from the way it is used in mathematics and
does not refer to a disputation between two people; instead it refers to
the information presented to the function, in this case, to the
+.  In Lisp, the arguments to a function are the atoms or lists
that follow the function.  The values returned by the evaluation of
these atoms or lists are passed to the function.  Different functions
require different numbers of arguments; some functions require none at
all.[2]
Arguments' Data Types




The type of data that should be passed to a function depends on what
kind of information it uses.  The arguments to a function such as
+ must have values that are numbers, since + adds numbers.
Other functions use different kinds of data for their arguments.
For example, the concat function links together or unites two or
more strings of text to produce a string.  The arguments are strings.
Concatenating the two character strings abc, def produces
the single string abcdef.  This can be seen by evaluating the
following:

(concat "abc" "def")

The value produced by evaluating this expression is "abcdef".
A function such as substring uses both a string and numbers as
arguments.  The function returns a part of the string, a substring of
the first argument.  This function takes three arguments.  Its first
argument is the string of characters, the second and third arguments are
numbers that indicate the beginning and end of the substring.  The
numbers are a count of the number of characters (including spaces and
punctuations) from the beginning of the string.
For example, if you evaluate the following:

(substring "The quick brown fox jumped." 16 19)

you will see "fox" appear in the echo area.  The arguments are the
string and the two numbers.
Note that the string passed to substring is a single atom even
though it is made up of several words separated by spaces.  Lisp counts
everything between the two quotation marks as part of the string,
including the spaces.  You can think of the substring function as
a kind of `atom smasher' since it takes an otherwise indivisible atom
and extracts a part.  However, substring is only able to extract
a substring from an argument that is a string, not from another type of
atom such as a number or symbol.

An Argument as the Value of a Variable or List



An argument can be a symbol that returns a value when it is evaluated.
For example, when the symbol fill-column by itself is evaluated,
it returns a number.  This number can be used in an addition.
Position the cursor after the following expression and type C-x
C-e:

(+ 2 fill-column)

The value will be a number two more than what you get by evaluating
fill-column alone.  For me, this is 74, because my value of
fill-column is 72.
As we have just seen, an argument can be a symbol that returns a value
when evaluated.  In addition, an argument can be a list that returns a
value when it is evaluated.  For example, in the following expression,
the arguments to the function concat are the strings
"The " and " red foxes." and the list
(number-to-string (+ 2 fill-column)).

(concat "The " (number-to-string (+ 2 fill-column)) " red foxes.")

If you evaluate this expression—and if, as with my Emacs,
fill-column evaluates to 72—"The 74 red foxes." will
appear in the echo area.  (Note that you must put spaces after the
word ‘The’ and before the word ‘red’ so they will appear in
the final string.  The function number-to-string converts the
integer that the addition function returns to a string.
number-to-string is also known as int-to-string.)

Variable Number of Arguments




Some functions, such as concat, + or *, take any
number of arguments.  (The * is the symbol for multiplication.)
This can be seen by evaluating each of the following expressions in
the usual way.  What you will see in the echo area is printed in this
text after ‘⇒’, which you may read as `evaluates to'.
In the first set, the functions have no arguments:

(+)       ⇒ 0

(*)       ⇒ 1

In this set, the functions have one argument each:

(+ 3)     ⇒ 3

(* 3)     ⇒ 3

In this set, the functions have three arguments each:

(+ 3 4 5) ⇒ 12

(* 3 4 5) ⇒ 60


Using the Wrong Type Object as an Argument




When a function is passed an argument of the wrong type, the Lisp
interpreter produces an error message.  For example, the +
function expects the values of its arguments to be numbers.  As an
experiment we can pass it the quoted symbol hello instead of a
number.  Position the cursor after the following expression and type
C-x C-e:

(+ 2 'hello)

When you do this you will generate an error message.  What has happened
is that + has tried to add the 2 to the value returned by
'hello, but the value returned by 'hello is the symbol
hello, not a number.  Only numbers can be added.  So +
could not carry out its addition.
In GNU Emacs version 22, you will create and enter a
*Backtrace* buffer that says:


---------- Buffer: *Backtrace* ----------
Debugger entered--Lisp error:
         (wrong-type-argument number-or-marker-p hello)
  +(2 hello)
  eval((+ 2 (quote hello)))
  eval-last-sexp-1(nil)
  eval-last-sexp(nil)
  call-interactively(eval-last-sexp)
---------- Buffer: *Backtrace* ----------

As usual, the error message tries to be helpful and makes sense after you
learn how to read it.[3]
The first part of the error message is straightforward; it says
‘wrong type argument’.  Next comes the mysterious jargon word
‘number-or-marker-p’.  This word is trying to tell you what
kind of argument the + expected.
The symbol number-or-marker-p says that the Lisp interpreter is
trying to determine whether the information presented it (the value of
the argument) is a number or a marker (a special object representing a
buffer position).  What it does is test to see whether the + is
being given numbers to add.  It also tests to see whether the
argument is something called a marker, which is a specific feature of
Emacs Lisp.  (In Emacs, locations in a buffer are recorded as markers.
When the mark is set with the C-@ or C-SPC command,
its position is kept as a marker.  The mark can be considered a
number—the number of characters the location is from the beginning
of the buffer.)  In Emacs Lisp, + can be used to add the
numeric value of marker positions as numbers.
The ‘p’ of number-or-marker-p is the embodiment of a
practice started in the early days of Lisp programming.  The ‘p’
stands for `predicate'.  In the jargon used by the early Lisp
researchers, a predicate refers to a function to determine whether some
property is true or false.  So the ‘p’ tells us that
number-or-marker-p is the name of a function that determines
whether it is true or false that the argument supplied is a number or
a marker.  Other Lisp symbols that end in ‘p’ include zerop,
a function that tests whether its argument has the value of zero, and
listp, a function that tests whether its argument is a list.
Finally, the last part of the error message is the symbol hello.
This is the value of the argument that was passed to +.  If the
addition had been passed the correct type of object, the value passed
would have been a number, such as 37, rather than a symbol like
hello.  But then you would not have got the error message.

The message Function




Like +, the message function takes a variable number of
arguments.  It is used to send messages to the user and is so useful
that we will describe it here.
A message is printed in the echo area.  For example, you can print a
message in your echo area by evaluating the following list:

(message "This message appears in the echo area!")

The whole string between double quotation marks is a single argument
and is printed in toto.  (Note that in this example, the message
itself will appear in the echo area within double quotes; that is
because you see the value returned by the message function.  In
most uses of message in programs that you write, the text will
be printed in the echo area as a side-effect, without the quotes.
See multiply-by-seven in detail, for an example of this.)
However, if there is a ‘%s’ in the quoted string of characters, the
message function does not print the ‘%s’ as such, but looks
to the argument that follows the string.  It evaluates the second
argument and prints the value at the location in the string where the
‘%s’ is.
You can see this by positioning the cursor after the following
expression and typing C-x C-e:

(message "The name of this buffer is: %s." (buffer-name))

In Info, "The name of this buffer is: *info*." will appear in the
echo area.  The function buffer-name returns the name of the
buffer as a string, which the message function inserts in place
of %s.
To print a value as an integer, use ‘%d’ in the same way as
‘%s’.  For example, to print a message in the echo area that
states the value of the fill-column, evaluate the following:

(message "The value of fill-column is %d." fill-column)

On my system, when I evaluate this list, "The value of
fill-column is 72." appears in my echo area[4].
If there is more than one ‘%s’ in the quoted string, the value of
the first argument following the quoted string is printed at the
location of the first ‘%s’ and the value of the second argument is
printed at the location of the second ‘%s’, and so on.
For example, if you evaluate the following,

(message "There are %d %s in the office!"
         (- fill-column 14) "pink elephants")

a rather whimsical message will appear in your echo area.  On my system
it says, "There are 58 pink elephants in the office!".
The expression (- fill-column 14) is evaluated and the resulting
number is inserted in place of the ‘%d’; and the string in double
quotes, "pink elephants", is treated as a single argument and
inserted in place of the ‘%s’.  (That is to say, a string between
double quotes evaluates to itself, like a number.)
Finally, here is a somewhat complex example that not only illustrates
the computation of a number, but also shows how you can use an
expression within an expression to generate the text that is substituted
for ‘%s’:

(message "He saw %d %s"
         (- fill-column 32)
         (concat "red "
                 (substring
                  "The quick brown foxes jumped." 16 21)
                 " leaping."))

In this example, message has three arguments: the string,
"He saw %d %s", the expression, (- fill-column 32), and
the expression beginning with the function concat.  The value
resulting from the evaluation of (- fill-column 32) is inserted
in place of the ‘%d’; and the value returned by the expression
beginning with concat is inserted in place of the ‘%s’.
When your fill column is 70 and you evaluate the expression, the
message "He saw 38 red foxes leaping." appears in your echo
area.



[2] It is curious to track the path by which the word `argument'
came to have two different meanings, one in mathematics and the other in
everyday English.  According to the Oxford English Dictionary,
the word derives from the Latin for ‘to make clear, prove’; thus it
came to mean, by one thread of derivation, `the evidence offered as
proof', which is to say, `the information offered', which led to its
meaning in Lisp.  But in the other thread of derivation, it came to mean
`to assert in a manner against which others may make counter
assertions', which led to the meaning of the word as a disputation.
(Note here that the English word has two different definitions attached
to it at the same time.  By contrast, in Emacs Lisp, a symbol cannot
have two different function definitions at the same time.)

[3] (quote hello) is an expansion of
the abbreviation 'hello.

[4] Actually, you
can use %s to print a number.  It is non-specific.  %d
prints only the part of a number left of a decimal point, and not
anything that is not a number.



Setting the Value of a Variable




There are several ways by which a variable can be given a value.  One of
the ways is to use either the function set or the function
setq.  Another way is to use let (see the section called “let”).  (The
jargon for this process is to bind a variable to a value.)
The following sections not only describe how set and setq
work but also illustrate how arguments are passed.
Using set




To set the value of the symbol flowers to the list '(rose
violet daisy buttercup), evaluate the following expression by
positioning the cursor after the expression and typing C-x C-e.

(set 'flowers '(rose violet daisy buttercup))

The list (rose violet daisy buttercup) will appear in the echo
area.  This is what is returned by the set function.  As a
side effect, the symbol flowers is bound to the list; that is,
the symbol flowers, which can be viewed as a variable, is given
the list as its value.  (This process, by the way, illustrates how a
side effect to the Lisp interpreter, setting the value, can be the
primary effect that we humans are interested in.  This is because every
Lisp function must return a value if it does not get an error, but it
will only have a side effect if it is designed to have one.)
After evaluating the set expression, you can evaluate the symbol
flowers and it will return the value you just set.  Here is the
symbol.  Place your cursor after it and type C-x C-e.

flowers

When you evaluate flowers, the list
(rose violet daisy buttercup) appears in the echo area.
Incidentally, if you evaluate 'flowers, the variable with a quote
in front of it, what you will see in the echo area is the symbol itself,
flowers.  Here is the quoted symbol, so you can try this:

'flowers

Note also, that when you use set, you need to quote both
arguments to set, unless you want them evaluated.  Since we do
not want either argument evaluated, neither the variable
flowers nor the list (rose violet daisy buttercup), both
are quoted.  (When you use set without quoting its first
argument, the first argument is evaluated before anything else is
done.  If you did this and flowers did not have a value
already, you would get an error message that the ‘Symbol's value
as variable is void’; on the other hand, if flowers did return
a value after it was evaluated, the set would attempt to set
the value that was returned.  There are situations where this is the
right thing for the function to do; but such situations are rare.)

Using setq




As a practical matter, you almost always quote the first argument to
set.  The combination of set and a quoted first argument
is so common that it has its own name: the special form setq.
This special form is just like set except that the first argument
is quoted automatically, so you don't need to type the quote mark
yourself.  Also, as an added convenience, setq permits you to set
several different variables to different values, all in one expression.
To set the value of the variable carnivores to the list
'(lion tiger leopard) using setq, the following expression
is used:

(setq carnivores '(lion tiger leopard))

This is exactly the same as using set except the first argument
is automatically quoted by setq.  (The ‘q’ in setq
means quote.)
With set, the expression would look like this:

(set 'carnivores '(lion tiger leopard))

Also, setq can be used to assign different values to
different variables.  The first argument is bound to the value
of the second argument, the third argument is bound to the value of the
fourth argument, and so on.  For example, you could use the following to
assign a list of trees to the symbol trees and a list of herbivores
to the symbol herbivores:

(setq trees '(pine fir oak maple)
      herbivores '(gazelle antelope zebra))

(The expression could just as well have been on one line, but it might
not have fit on a page; and humans find it easier to read nicely
formatted lists.)
Although I have been using the term `assign', there is another way of
thinking about the workings of set and setq; and that is to
say that set and setq make the symbol point to the
list.  This latter way of thinking is very common and in forthcoming
chapters we shall come upon at least one symbol that has `pointer' as
part of its name.  The name is chosen because the symbol has a value,
specifically a list, attached to it; or, expressed another way,
the symbol is set to “point” to the list.

Counting




Here is an example that shows how to use setq in a counter.  You
might use this to count how many times a part of your program repeats
itself.  First set a variable to zero; then add one to the number each
time the program repeats itself.  To do this, you need a variable that
serves as a counter, and two expressions: an initial setq
expression that sets the counter variable to zero; and a second
setq expression that increments the counter each time it is
evaluated.

(setq counter 0)                ; Let's call this the initializer.

(setq counter (+ counter 1))    ; This is the incrementer.

counter                         ; This is the counter.

(The text following the ‘;’ are comments.  See Change a Function Definition.)
If you evaluate the first of these expressions, the initializer,
(setq counter 0), and then evaluate the third expression,
counter, the number 0 will appear in the echo area.  If
you then evaluate the second expression, the incrementer, (setq
counter (+ counter 1)), the counter will get the value 1.  So if you
again evaluate counter, the number 1 will appear in the
echo area.  Each time you evaluate the second expression, the value of
the counter will be incremented.
When you evaluate the incrementer, (setq counter (+ counter 1)),
the Lisp interpreter first evaluates the innermost list; this is the
addition.  In order to evaluate this list, it must evaluate the variable
counter and the number 1.  When it evaluates the variable
counter, it receives its current value.  It passes this value and
the number 1 to the + which adds them together.  The sum
is then returned as the value of the inner list and passed to the
setq which sets the variable counter to this new value.
Thus, the value of the variable, counter, is changed.


Summary



Learning Lisp is like climbing a hill in which the first part is the
steepest.  You have now climbed the most difficult part; what remains
becomes easier as you progress onwards.
In summary,
	Lisp programs are made up of expressions, which are lists or single atoms.

	Lists are made up of zero or more atoms or inner lists, separated by whitespace and
surrounded by parentheses.  A list can be empty.

	Atoms are multi-character symbols, like forward-paragraph, single
character symbols like +, strings of characters between double
quotation marks, or numbers.

	A number evaluates to itself.

	A string between double quotes also evaluates to itself.

	When you evaluate a symbol by itself, its value is returned.

	When you evaluate a list, the Lisp interpreter looks at the first symbol
in the list and then at the function definition bound to that symbol.
Then the instructions in the function definition are carried out.

	A single quotation mark,
'
, tells the Lisp interpreter that it should
return the following expression as written, and not evaluate it as it
would if the quote were not there.

	Arguments are the information passed to a function.  The arguments to a
function are computed by evaluating the rest of the elements of the list
of which the function is the first element.

	A function always returns a value when it is evaluated (unless it gets
an error); in addition, it may also carry out some action called a
“side effect”.  In many cases, a function's primary purpose is to
create a side effect.




Exercises



A few simple exercises:
	Generate an error message by evaluating an appropriate symbol that is
not within parentheses.

	Generate an error message by evaluating an appropriate symbol that is
between parentheses.

	Create a counter that increments by two rather than one.

	Write an expression that prints a message in the echo area when
evaluated.




Chapter 2. Practicing Evaluation




Before learning how to write a function definition in Emacs Lisp, it is
useful to spend a little time evaluating various expressions that have
already been written.  These expressions will be lists with the
functions as their first (and often only) element.  Since some of the
functions associated with buffers are both simple and interesting, we
will start with those.  In this section, we will evaluate a few of
these.  In another section, we will study the code of several other
buffer-related functions, to see how they were written.
How to Evaluate



Whenever you give an editing command to Emacs Lisp, such as the
command to move the cursor or to scroll the screen, you are evaluating
an expression, the first element of which is a function.  This is
how Emacs works.
When you type keys, you cause the Lisp interpreter to evaluate an
expression and that is how you get your results.  Even typing plain text
involves evaluating an Emacs Lisp function, in this case, one that uses
self-insert-command, which simply inserts the character you
typed.  The functions you evaluate by typing keystrokes are called
interactive functions, or commands; how you make a function
interactive will be illustrated in the chapter on how to write function
definitions.  See Making a Function Interactive.
In addition to typing keyboard commands, we have seen a second way to
evaluate an expression: by positioning the cursor after a list and
typing C-x C-e.  This is what we will do in the rest of this
section.  There are other ways to evaluate an expression as well; these
will be described as we come to them.
Besides being used for practicing evaluation, the functions shown in the
next few sections are important in their own right.  A study of these
functions makes clear the distinction between buffers and files, how to
switch to a buffer, and how to determine a location within it.


Buffer Names




The two functions, buffer-name and buffer-file-name, show
the difference between a file and a buffer.  When you evaluate the
following expression, (buffer-name), the name of the buffer
appears in the echo area.  When you evaluate (buffer-file-name),
the name of the file to which the buffer refers appears in the echo
area.  Usually, the name returned by (buffer-name) is the same as
the name of the file to which it refers, and the name returned by
(buffer-file-name) is the full path-name of the file.
A file and a buffer are two different entities.  A file is information
recorded permanently in the computer (unless you delete it).  A buffer,
on the other hand, is information inside of Emacs that will vanish at
the end of the editing session (or when you kill the buffer).  Usually,
a buffer contains information that you have copied from a file; we say
the buffer is visiting that file.  This copy is what you work on
and modify.  Changes to the buffer do not change the file, until you
save the buffer.  When you save the buffer, the buffer is copied to the file
and is thus saved permanently.
If you are reading this in Info inside of GNU Emacs, you can evaluate
each of the following expressions by positioning the cursor after it and
typing C-x C-e.

(buffer-name)

(buffer-file-name)
     
When I do this in Info, the value returned by evaluating
(buffer-name) is "*info*", and the value returned by
evaluating (buffer-file-name) is nil.
On the other hand, while I am writing this document, the value
returned by evaluating (buffer-name) is
"introduction.texinfo", and the value returned by evaluating
(buffer-file-name) is
"/gnu/work/intro/introduction.texinfo".
The former is the name of the buffer and the latter is the name of the
file.  In Info, the buffer name is "*info*".  Info does not
point to any file, so the result of evaluating
(buffer-file-name) is nil.  The symbol nil is
from the Latin word for `nothing'; in this case, it means that the
buffer is not associated with any file.  (In Lisp, nil is also
used to mean `false' and is a synonym for the empty list, ().)
When I am writing, the name of my buffer is
"introduction.texinfo".  The name of the file to which it
points is "/gnu/work/intro/introduction.texinfo".
(In the expressions, the parentheses tell the Lisp interpreter to
treat buffer-name and buffer-file-name as
functions; without the parentheses, the interpreter would attempt to
evaluate the symbols as variables.  See the section called “Variables”.)
In spite of the distinction between files and buffers, you will often
find that people refer to a file when they mean a buffer and vice-verse.
Indeed, most people say, “I am editing a file,” rather than saying,
“I am editing a buffer which I will soon save to a file.”  It is
almost always clear from context what people mean.  When dealing with
computer programs, however, it is important to keep the distinction in mind,
since the computer is not as smart as a person.
The word `buffer', by the way, comes from the meaning of the word as a
cushion that deadens the force of a collision.  In early computers, a
buffer cushioned the interaction between files and the computer's
central processing unit.  The drums or tapes that held a file and the
central processing unit were pieces of equipment that were very
different from each other, working at their own speeds, in spurts.  The
buffer made it possible for them to work together effectively.
Eventually, the buffer grew from being an intermediary, a temporary
holding place, to being the place where work is done.  This
transformation is rather like that of a small seaport that grew into a
great city: once it was merely the place where cargo was warehoused
temporarily before being loaded onto ships; then it became a business
and cultural center in its own right.
Not all buffers are associated with files.  For example, a
*scratch* buffer does not visit any file.  Similarly, a
*Help* buffer is not associated with any file.
In the old days, when you lacked a ~/.emacs file and started an
Emacs session by typing the command emacs alone, without naming
any files, Emacs started with the *scratch* buffer visible.
Nowadays, you will see a splash screen.  You can follow one of the
commands suggested on the splash screen, visit a file, or press the
spacebar to reach the *scratch* buffer.
If you switch to the *scratch* buffer, type
(buffer-name), position the cursor after it, and then type
C-x C-e to evaluate the expression.  The name "*scratch*"
will be returned and will appear in the echo area.  "*scratch*"
is the name of the buffer.  When you type (buffer-file-name) in
the *scratch* buffer and evaluate that, nil will appear
in the echo area, just as it does when you evaluate
(buffer-file-name) in Info.
Incidentally, if you are in the *scratch* buffer and want the
value returned by an expression to appear in the *scratch*
buffer itself rather than in the echo area, type C-u C-x C-e
instead of C-x C-e.  This causes the value returned to appear
after the expression.  The buffer will look like this:

(buffer-name)"*scratch*"

You cannot do this in Info since Info is read-only and it will not allow
you to change the contents of the buffer.  But you can do this in any
buffer you can edit; and when you write code or documentation (such as
this book), this feature is very useful.

Getting Buffers




The buffer-name function returns the name of the buffer;
to get the buffer itself, a different function is needed: the
current-buffer function.  If you use this function in code, what
you get is the buffer itself.
A name and the object or entity to which the name refers are different
from each other.  You are not your name.  You are a person to whom
others refer by name.  If you ask to speak to George and someone hands you
a card with the letters ‘G’, ‘e’, ‘o’, ‘r’,
‘g’, and ‘e’ written on it, you might be amused, but you would
not be satisfied.  You do not want to speak to the name, but to the
person to whom the name refers.  A buffer is similar: the name of the
scratch buffer is *scratch*, but the name is not the buffer.  To
get a buffer itself, you need to use a function such as
current-buffer.
However, there is a slight complication: if you evaluate
current-buffer in an expression on its own, as we will do here,
what you see is a printed representation of the name of the buffer
without the contents of the buffer.  Emacs works this way for two
reasons: the buffer may be thousands of lines long—too long to be
conveniently displayed; and, another buffer may have the same contents
but a different name, and it is important to distinguish between them.
Here is an expression containing the function:

(current-buffer)

If you evaluate this expression in Info in Emacs in the usual way,
#<buffer *info*> will appear in the echo area.  The special
format indicates that the buffer itself is being returned, rather than
just its name.
Incidentally, while you can type a number or symbol into a program, you
cannot do that with the printed representation of a buffer: the only way
to get a buffer itself is with a function such as current-buffer.
A related function is other-buffer.  This returns the most
recently selected buffer other than the one you are in currently, not
a printed representation of its name.  If you have recently switched
back and forth from the *scratch* buffer, other-buffer
will return that buffer.
You can see this by evaluating the expression:

(other-buffer)

You should see #<buffer *scratch*> appear in the echo area, or
the name of whatever other buffer you switched back from most
recently[5].


[5] Actually, by default, if the buffer from which you
just switched is visible to you in another window, other-buffer
will choose the most recent buffer that you cannot see; this is a
subtlety that I often forget.



Switching Buffers




The other-buffer function actually provides a buffer when it is
used as an argument to a function that requires one.  We can see this
by using other-buffer and switch-to-buffer to switch to a
different buffer.
But first, a brief introduction to the switch-to-buffer
function.  When you switched back and forth from Info to the
*scratch* buffer to evaluate (buffer-name), you most
likely typed C-x b and then typed *scratch*[6] when prompted in the minibuffer for the name of
the buffer to which you wanted to switch.  The keystrokes, C-x
b, cause the Lisp interpreter to evaluate the interactive function
switch-to-buffer.  As we said before, this is how Emacs works:
different keystrokes call or run different functions.  For example,
C-f calls forward-char, M-e calls
forward-sentence, and so on.
By writing switch-to-buffer in an expression, and giving it a
buffer to switch to, we can switch buffers just the way C-x b
does.
Here is the Lisp expression:

(switch-to-buffer (other-buffer))

The symbol switch-to-buffer is the first element of the list,
so the Lisp interpreter will treat it as a function and carry out the
instructions that are attached to it.  But before doing that, the
interpreter will note that other-buffer is inside parentheses
and work on that symbol first.  other-buffer is the first (and
in this case, the only) element of this list, so the Lisp interpreter
calls or runs the function.  It returns another buffer.  Next, the
interpreter runs switch-to-buffer, passing to it, as an
argument, the other buffer, which is what Emacs will switch to.  If
you are reading this in Info, try this now.  Evaluate the expression.
(To get back, type C-x b RET.)[7]
In the programming examples in later sections of this document, you will
see the function set-buffer more often than
switch-to-buffer.  This is because of a difference between
computer programs and humans: humans have eyes and expect to see the
buffer on which they are working on their computer terminals.  This is
so obvious, it almost goes without saying.  However, programs do not
have eyes.  When a computer program works on a buffer, that buffer does
not need to be visible on the screen.
switch-to-buffer is designed for humans and does two different
things: it switches the buffer to which Emacs' attention is directed; and
it switches the buffer displayed in the window to the new buffer.
set-buffer, on the other hand, does only one thing: it switches
the attention of the computer program to a different buffer.  The buffer
on the screen remains unchanged (of course, normally nothing happens
there until the command finishes running).
Also, we have just introduced another jargon term, the word call.
When you evaluate a list in which the first symbol is a function, you
are calling that function.  The use of the term comes from the notion of
the function as an entity that can do something for you if you `call'
it—just as a plumber is an entity who can fix a leak if you call him
or her.


[6] Or
rather, to save typing, you probably only typed RET if the
default buffer was *scratch*, or if it was different, then you
typed just part of the name, such as *sc, pressed your
TAB key to cause it to expand to the full name, and then typed
your RET key.

[7] Remember, this
expression will move you to your most recent other buffer that you
cannot see.  If you really want to go to your most recently selected
buffer, even if you can still see it, you need to evaluate the
following more complex expression:


(switch-to-buffer (other-buffer (current-buffer) t))


In this case, the first argument to other-buffer tells it which
buffer to skip—the current one—and the second argument tells
other-buffer it is OK to switch to a visible buffer.
In regular use, switch-to-buffer takes you to an invisible
window since you would most likely use C-x o (other-window)
to go to another visible buffer.



Buffer Size and the Location of Point




Finally, let's look at several rather simple functions,
buffer-size, point, point-min, and
point-max.  These give information about the size of a buffer and
the location of point within it.
The function buffer-size tells you the size of the current
buffer; that is, the function returns a count of the number of
characters in the buffer.

(buffer-size)

You can evaluate this in the usual way, by positioning the
cursor after the expression and typing C-x C-e.
In Emacs, the current  position of the cursor is called point.
The expression (point) returns a number that tells you where the
cursor is located as a count of the number of characters from the
beginning of the buffer up to point.
You can see the character count for point in this buffer by evaluating
the following expression in the usual way:

(point)

As I write this, the value of point is 65724.  The point
function is frequently used in some of the examples later in this
book.
The value of point depends, of course, on its location within the
buffer.  If you evaluate point in this spot, the number will be larger:

(point)

For me, the value of point in this location is 66043, which means that
there are 319 characters (including spaces) between the two
expressions.  (Doubtless, you will see different numbers, since I will
have edited this since I first evaluated point.)
The function point-min is somewhat similar to point, but
it returns the value of the minimum permissible value of point in the
current buffer.  This is the number 1 unless narrowing is in
effect.  (Narrowing is a mechanism whereby you can restrict yourself,
or a program, to operations on just a part of a buffer.
See Narrowing and Widening.)  Likewise, the
function point-max returns the value of the maximum permissible
value of point in the current buffer.

Exercise



Find a file with which you are working and move towards its middle.
Find its buffer name, file name, length, and your position in the file.

Chapter 3. How To Write Function Definitions




When the Lisp interpreter evaluates a list, it looks to see whether the
first symbol on the list has a function definition attached to it; or,
put another way, whether the symbol points to a function definition.  If
it does, the computer carries out the instructions in the definition.  A
symbol that has a function definition is called, simply, a function
(although, properly speaking, the definition is the function and the
symbol refers to it.)
An Aside about Primitive Functions




All functions are defined in terms of other functions, except for a few
primitive functions that are written in the C programming
language.  When you write functions' definitions, you will write them in
Emacs Lisp and use other functions as your building blocks.  Some of the
functions you will use will themselves be written in Emacs Lisp (perhaps
by you) and some will be primitives written in C.  The primitive
functions are used exactly like those written in Emacs Lisp and behave
like them.  They are written in C so we can easily run GNU Emacs on any
computer that has sufficient power and can run C.
Let me re-emphasize this: when you write code in Emacs Lisp, you do not
distinguish between the use of functions written in C and the use of
functions written in Emacs Lisp.  The difference is irrelevant.  I
mention the distinction only because it is interesting to know.  Indeed,
unless you investigate, you won't know whether an already-written
function is written in Emacs Lisp or C.


The defun Special Form




In Lisp, a symbol such as mark-whole-buffer has code attached to
it that tells the computer what to do when the function is called.
This code is called the function definition and is created by
evaluating a Lisp expression that starts with the symbol defun
(which is an abbreviation for define function).  Because
defun does not evaluate its arguments in the usual way, it is
called a special form.
In subsequent sections, we will look at function definitions from the
Emacs source code, such as mark-whole-buffer.  In this section,
we will describe a simple function definition so you can see how it
looks.  This function definition uses arithmetic because it makes for a
simple example.  Some people dislike examples using arithmetic; however,
if you are such a person, do not despair.  Hardly any of the code we
will study in the remainder of this introduction involves arithmetic or
mathematics.  The examples mostly involve text in one way or another.
A function definition has up to five parts following the word
defun:
	The name of the symbol to which the function definition should be
attached.

	A list of the arguments that will be passed to the function.  If no
arguments will be passed to the function, this is an empty list,
().

	Documentation describing the function.  (Technically optional, but
strongly recommended.)

	Optionally, an expression to make the function interactive so you can
use it by typing M-x and then the name of the function; or by
typing an appropriate key or keychord.


	The code that instructs the computer what to do: the body of the
function definition.



It is helpful to think of the five parts of a function definition as
being organized in a template, with slots for each part:
(defun function-name (arguments…)
  "optional-documentation…"
  (interactive argument-passing-info)     ; optional
  body…)

As an example, here is the code for a function that multiplies its
argument by 7.  (This example is not interactive.  See Making a Function Interactive, for that information.)
(defun multiply-by-seven (number)
  "Multiply NUMBER by seven."
  (* 7 number))

This definition begins with a parenthesis and the symbol defun,
followed by the name of the function.
The name of the function is followed by a list that contains the
arguments that will be passed to the function.  This list is called
the argument list.  In this example, the list has only one
element, the symbol, number.  When the function is used, the
symbol will be bound to the value that is used as the argument to the
function.
Instead of choosing the word number for the name of the argument,
I could have picked any other name.  For example, I could have chosen
the word multiplicand.  I picked the word `number' because it
tells what kind of value is intended for this slot; but I could just as
well have chosen the word `multiplicand' to indicate the role that the
value placed in this slot will play in the workings of the function.  I
could have called it foogle, but that would have been a bad
choice because it would not tell humans what it means.  The choice of
name is up to the programmer and should be chosen to make the meaning of
the function clear.
Indeed, you can choose any name you wish for a symbol in an argument
list, even the name of a symbol used in some other function: the name
you use in an argument list is private to that particular definition.
In that definition, the name refers to a different entity than any use
of the same name outside the function definition.  Suppose you have a
nick-name `Shorty' in your family; when your family members refer to
`Shorty', they mean you.  But outside your family, in a movie, for
example, the name `Shorty' refers to someone else.  Because a name in an
argument list is private to the function definition, you can change the
value of such a symbol inside the body of a function without changing
its value outside the function.  The effect is similar to that produced
by a let expression.  (See let.)
The argument list is followed by the documentation string that
describes the function.  This is what you see when you type
C-h f and the name of a function.  Incidentally, when you
write a documentation string like this, you should make the first line
a complete sentence since some commands, such as apropos, print
only the first line of a multi-line documentation string.  Also, you
should not indent the second line of a documentation string, if you
have one, because that looks odd when you use C-h f
(describe-function).  The documentation string is optional, but
it is so useful, it should be included in almost every function you
write.
The third line of the example consists of the body of the function
definition.  (Most functions' definitions, of course, are longer than
this.)  In this function, the body is the list, (* 7 number), which
says to multiply the value of number by 7.  (In Emacs Lisp,
* is the function for multiplication, just as + is the
function for addition.)
When you use the multiply-by-seven function, the argument
number evaluates to the actual number you want used.  Here is an
example that shows how multiply-by-seven is used; but don't try
to evaluate this yet!
(multiply-by-seven 3)

The symbol number, specified in the function definition in the
next section, is given or “bound to” the value 3 in the actual use of
the function.  Note that although number was inside parentheses
in the function definition, the argument passed to the
multiply-by-seven function is not in parentheses.  The
parentheses are written in the function definition so the computer can
figure out where the argument list ends and the rest of the function
definition begins.
If you evaluate this example, you are likely to get an error message.
(Go ahead, try it!)  This is because we have written the function
definition, but not yet told the computer about the definition—we have
not yet installed (or `loaded') the function definition in Emacs.
Installing a function is the process that tells the Lisp interpreter the
definition of the function.  Installation is described in the next
section.

Install a Function Definition




If you are reading this inside of Info in Emacs, you can try out the
multiply-by-seven function by first evaluating the function
definition and then evaluating (multiply-by-seven 3).  A copy of
the function definition follows.  Place the cursor after the last
parenthesis of the function definition and type C-x C-e.  When you
do this, multiply-by-seven will appear in the echo area.  (What
this means is that when a function definition is evaluated, the value it
returns is the name of the defined function.)  At the same time, this
action installs the function definition.

(defun multiply-by-seven (number)
  "Multiply NUMBER by seven."
  (* 7 number))

By evaluating this defun, you have just installed
multiply-by-seven in Emacs.  The function is now just as much a
part of Emacs as forward-word or any other editing function you
use.  (multiply-by-seven will stay installed until you quit
Emacs.  To reload code automatically whenever you start Emacs, see
Installing Code Permanently.)
The effect of installation



You can see the effect of installing multiply-by-seven by
evaluating the following sample.  Place the cursor after the following
expression and type C-x C-e.  The number 21 will appear in the
echo area.

(multiply-by-seven 3)

If you wish, you can read the documentation for the function by typing
C-h f (describe-function) and then the name of the
function, multiply-by-seven.  When you do this, a
*Help* window will appear on your screen that says:
multiply-by-seven is a Lisp function.
(multiply-by-seven NUMBER)

Multiply NUMBER by seven.

(To return to a single window on your screen, type C-x 1.)

Change a Function Definition




If you want to change the code in multiply-by-seven, just rewrite
it.  To install the new version in place of the old one, evaluate the
function definition again.  This is how you modify code in Emacs.  It is
very simple.
As an example, you can change the multiply-by-seven function to
add the number to itself seven times instead of multiplying the number
by seven.  It produces the same answer, but by a different path.  At
the same time, we will add a comment to the code; a comment is text
that the Lisp interpreter ignores, but that a human reader may find
useful or enlightening.  The comment is that this is the “second
version”.

(defun multiply-by-seven (number)       ; Second version.
  "Multiply NUMBER by seven."
  (+ number number number number number number number))

The comment follows a semicolon, ‘;’.  In Lisp, everything on a
line that follows a semicolon is a comment.  The end of the line is the
end of the comment.  To stretch a comment over two or more lines, begin
each line with a semicolon.
See Beginning a .emacsFile, and See section ``Comments'' in The GNU Emacs Lisp Reference Manual, for more about comments.
You can install this version of the multiply-by-seven function by
evaluating it in the same way you evaluated the first function: place
the cursor after the last parenthesis and type C-x C-e.
In summary, this is how you write code in Emacs Lisp: you write a
function; install it; test it; and then make fixes or enhancements and
install it again.


Make a Function Interactive




You make a function interactive by placing a list that begins with
the special form interactive immediately after the
documentation.  A user can invoke an interactive function by typing
M-x and then the name of the function; or by typing the keys to
which it is bound, for example, by typing C-n for
next-line or C-x h for mark-whole-buffer.
Interestingly, when you call an interactive function interactively,
the value returned is not automatically displayed in the echo area.
This is because you often call an interactive function for its side
effects, such as moving forward by a word or line, and not for the
value returned.  If the returned value were displayed in the echo area
each time you typed a key, it would be very distracting.
An Interactive multiply-by-seven, An Overview



Both the use of the special form interactive and one way to
display a value in the echo area can be illustrated by creating an
interactive version of multiply-by-seven.
Here is the code:

(defun multiply-by-seven (number)       ; Interactive version.
  "Multiply NUMBER by seven."
  (interactive "p")
  (message "The result is %d" (* 7 number)))
     
You can install this code by placing your cursor after it and typing
C-x C-e.  The name of the function will appear in your echo area.
Then, you can use this code by typing C-u and a number and then
typing M-x multiply-by-seven and pressing RET.  The phrase
‘The result is …’ followed by the product will appear in the
echo area.
Speaking more generally, you invoke a function like this in either of two
ways:
	By typing a prefix argument that contains the number to be passed, and
then typing M-x and the name of the function, as with
C-u 3 M-x forward-sentence; or,

	By typing whatever key or keychord the function is bound to, as with
C-u 3 M-e.



Both the examples just mentioned work identically to move point forward
three sentences.  (Since multiply-by-seven is not bound to a key,
it could not be used as an example of key binding.)
(See Some Keybindings, to learn how to bind a command
to a key.)
A prefix argument is passed to an interactive function by typing the
META key followed by a number, for example, M-3 M-e, or by
typing C-u and then a number, for example, C-u 3 M-e (if you
type C-u without a number, it defaults to 4).

An Interactive multiply-by-seven



Let's look at the use of the special form interactive and then at
the function message in the interactive version of
multiply-by-seven.  You will recall that the function definition
looks like this:

(defun multiply-by-seven (number)       ; Interactive version.
  "Multiply NUMBER by seven."
  (interactive "p")
  (message "The result is %d" (* 7 number)))

In this function, the expression, (interactive "p"), is a list of
two elements.  The "p" tells Emacs to pass the prefix argument to
the function and use its value for the argument of the function.
The argument will be a number.  This means that the symbol
number will be bound to a number in the line:

(message "The result is %d" (* 7 number))

For example, if your prefix argument is 5, the Lisp interpreter will
evaluate the line as if it were:

(message "The result is %d" (* 7 5))

(If you are reading this in GNU Emacs, you can evaluate this expression
yourself.)  First, the interpreter will evaluate the inner list, which
is (* 7 5).  This returns a value of 35.  Next, it
will evaluate the outer list, passing the values of the second and
subsequent elements of the list to the function message.
As we have seen, message is an Emacs Lisp function especially
designed for sending a one line message to a user.  (See The message function.)  In summary, the message
function prints its first argument in the echo area as is, except for
occurrences of ‘%d’ or ‘%s’ (and various other %-sequences
which we have not mentioned).  When it sees a control sequence, the
function looks to the second or subsequent arguments and prints the
value of the argument in the location in the string where the control
sequence is located.
In the interactive multiply-by-seven function, the control string
is ‘%d’, which requires a number, and the value returned by
evaluating (* 7 5) is the number 35.  Consequently, the number 35
is printed in place of the ‘%d’ and the message is ‘The result
is 35’.
(Note that when you call the function multiply-by-seven, the
message is printed without quotes, but when you call message, the
text is printed in double quotes.  This is because the value returned by
message is what appears in the echo area when you evaluate an
expression whose first element is message; but when embedded in a
function, message prints the text as a side effect without
quotes.)


Different Options for interactive




In the example, multiply-by-seven used "p" as the
argument to interactive.  This argument told Emacs to interpret
your typing either C-u followed by a number or META
followed by a number as a command to pass that number to the function
as its argument.  Emacs has more than twenty characters predefined for
use with interactive.  In almost every case, one of these
options will enable you to pass the right information interactively to
a function.  (See See section ``Code Characters for @code{interactive}'' in The GNU Emacs Lisp Reference Manual.)
Consider the function zap-to-char.  Its interactive expression
is

(interactive "p\ncZap to char: ")

The first part of the argument to interactive is ‘p’, with
which you are already familiar.  This argument tells Emacs to
interpret a `prefix', as a number to be passed to the function.  You
can specify a prefix either by typing C-u followed by a number
or by typing META followed by a number.  The prefix is the
number of specified characters.  Thus, if your prefix is three and the
specified character is ‘x’, then you will delete all the text up
to and including the third next ‘x’.  If you do not set a prefix,
then you delete all the text up to and including the specified
character, but no more.
The ‘c’ tells the function the name of the character to which to delete.
More formally, a function with two or more arguments can have
information passed to each argument by adding parts to the string that
follows interactive.  When you do this, the information is
passed to each argument in the same order it is specified in the
interactive list.  In the string, each part is separated from
the next part by a ‘\n’, which is a newline.  For example, you
can follow ‘p’ with a ‘\n’ and an ‘cZap to char: ’.
This causes Emacs to pass the value of the prefix argument (if there
is one) and the character.
In this case, the function definition looks like the following, where
arg and char are the symbols to which interactive
binds the prefix argument and the specified character:

(defun name-of-function (arg char)
  "documentation…"
  (interactive "p\ncZap to char: ")
  body-of-function…)

(The space after the colon in the prompt makes it look better when you
are prompted.  See The Definition of copy-to-buffer, for an example.)
When a function does not take arguments, interactive does not
require any.  Such a function contains the simple expression
(interactive).  The mark-whole-buffer function is like
this.
Alternatively, if the special letter-codes are not right for your
application, you can pass your own arguments to interactive as
a list.
See The Definition of append-to-buffer,
for an example.  See See section ``Using @code{Interactive}'' in The GNU Emacs Lisp Reference Manual, for a more complete
explanation about this technique.

Install Code Permanently




When you install a function definition by evaluating it, it will stay
installed until you quit Emacs.  The next time you start a new session
of Emacs, the function will not be installed unless you evaluate the
function definition again.
At some point, you may want to have code installed automatically
whenever you start a new session of Emacs.  There are several ways of
doing this:
	If you have code that is just for yourself, you can put the code for the
function definition in your .emacs initialization file.  When you
start Emacs, your .emacs file is automatically evaluated and all
the function definitions within it are installed.
See Your .emacs File.

	Alternatively, you can put the function definitions that you want
installed in one or more files of their own and use the load
function to cause Emacs to evaluate and thereby install each of the
functions in the files.
See Loading Files.

	Thirdly, if you have code that your whole site will use, it is usual
to put it in a file called site-init.el that is loaded when
Emacs is built.  This makes the code available to everyone who uses
your machine.  (See the INSTALL file that is part of the Emacs
distribution.)



Finally, if you have code that everyone who uses Emacs may want, you
can post it on a computer network or send a copy to the Free Software
Foundation.  (When you do this, please license the code and its
documentation under a license that permits other people to run, copy,
study, modify, and redistribute the code and which protects you from
having your work taken from you.)  If you send a copy of your code to
the Free Software Foundation, and properly protect yourself and
others, it may be included in the next release of Emacs.  In large
part, this is how Emacs has grown over the past years, by donations.

let




The let expression is a special form in Lisp that you will need
to use in most function definitions.
let is used to attach or bind a symbol to a value in such a way
that the Lisp interpreter will not confuse the variable with a
variable of the same name that is not part of the function.
To understand why the let special form is necessary, consider
the situation in which you own a home that you generally refer to as
`the house', as in the sentence, “The house needs painting.”  If you
are visiting a friend and your host refers to `the house', he is
likely to be referring to his house, not yours, that is, to a
different house.
If your friend is referring to his house and you think he is referring
to your house, you may be in for some confusion.  The same thing could
happen in Lisp if a variable that is used inside of one function has
the same name as a variable that is used inside of another function,
and the two are not intended to refer to the same value.  The
let special form prevents this kind of confusion.
let Prevents Confusion



The let special form prevents confusion.  let creates a
name for a local variable that overshadows any use of the same
name outside the let expression.  This is like understanding
that whenever your host refers to `the house', he means his house, not
yours.  (Symbols used in argument lists work the same way.
See The defun Special Form.)
Local variables created by a let expression retain their value
only within the let expression itself (and within
expressions called within the let expression); the local
variables have no effect outside the let expression.
Another way to think about let is that it is like a setq
that is temporary and local.  The values set by let are
automatically undone when the let is finished.  The setting
only affects expressions that are inside the bounds of the let
expression.  In computer science jargon, we would say “the binding of
a symbol is visible only in functions called in the let form;
in Emacs Lisp, scoping is dynamic, not lexical.”
let can create more than one variable at once.  Also,
let gives each variable it creates an initial value, either a
value specified by you, or nil.  (In the jargon, this is called
`binding the variable to the value'.)  After let has created
and bound the variables, it executes the code in the body of the
let, and returns the value of the last expression in the body,
as the value of the whole let expression.  (`Execute' is a jargon
term that means to evaluate a list; it comes from the use of the word
meaning `to give practical effect to' (Oxford English
Dictionary).  Since you evaluate an expression to perform an action,
`execute' has evolved as a synonym to `evaluate'.)

The Parts of a let Expression




A let expression is a list of three parts.  The first part is
the symbol let.  The second part is a list, called a
varlist, each element of which is either a symbol by itself or a
two-element list, the first element of which is a symbol.  The third
part of the let expression is the body of the let.  The
body usually consists of one or more lists.
A template for a let expression looks like this:

(let varlist body…)

The symbols in the varlist are the variables that are given initial
values by the let special form.  Symbols by themselves are given
the initial value of nil; and each symbol that is the first
element of a two-element list is bound to the value that is returned
when the Lisp interpreter evaluates the second element.
Thus, a varlist might look like this: (thread (needles 3)).  In
this case, in a let expression, Emacs binds the symbol
thread to an initial value of nil, and binds the symbol
needles to an initial value of 3.
When you write a let expression, what you do is put the
appropriate expressions in the slots of the let expression
template.
If the varlist is composed of two-element lists, as is often the case,
the template for the let expression looks like this:

(let ((variable value)
      (variable value)
      …)
  body…)


Sample let Expression




The following expression creates and gives initial values
to the two variables zebra and tiger.  The body of the
let expression is a list which calls the message function.

(let ((zebra 'stripes)
      (tiger 'fierce))
  (message "One kind of animal has %s and another is %s."
           zebra tiger))

Here, the varlist is ((zebra 'stripes) (tiger 'fierce)).
The two variables are zebra and tiger.  Each variable is
the first element of a two-element list and each value is the second
element of its two-element list.  In the varlist, Emacs binds the
variable zebra to the value stripes[8], and binds the
variable tiger to the value fierce.  In this example,
both values are symbols preceded by a quote.  The values could just as
well have been another list or a string.  The body of the let
follows after the list holding the variables.  In this example, the
body is a list that uses the message function to print a string
in the echo area.
You may evaluate the example in the usual fashion, by placing the
cursor after the last parenthesis and typing C-x C-e.  When you do
this, the following will appear in the echo area:

"One kind of animal has stripes and another is fierce."

As we have seen before, the message function prints its first
argument, except for ‘%s’.  In this example, the value of the variable
zebra is printed at the location of the first ‘%s’ and the
value of the variable tiger is printed at the location of the
second ‘%s’.

Uninitialized Variables in a let Statement




If you do not bind the variables in a let statement to specific
initial values, they will automatically be bound to an initial value of
nil, as in the following expression:

(let ((birch 3)
      pine
      fir
      (oak 'some))
  (message
   "Here are %d variables with %s, %s, and %s value."
   birch pine fir oak))

Here, the varlist is ((birch 3) pine fir (oak 'some)).
If you evaluate this expression in the usual way, the following will
appear in your echo area:

"Here are 3 variables with nil, nil, and some value."

In this example, Emacs binds the symbol birch to the number 3,
binds the symbols pine and fir to nil, and binds
the symbol oak to the value some.
Note that in the first part of the let, the variables pine
and fir stand alone as atoms that are not surrounded by
parentheses; this is because they are being bound to nil, the
empty list.  But oak is bound to some and so is a part of
the list (oak 'some).  Similarly, birch is bound to the
number 3 and so is in a list with that number.  (Since a number
evaluates to itself, the number does not need to be quoted.  Also, the
number is printed in the message using a ‘%d’ rather than a
‘%s’.)  The four variables as a group are put into a list to
delimit them from the body of the let.



[8] According
to Jared Diamond in Guns, Germs, and Steel, “… zebras
become impossibly dangerous as they grow older” but the claim here is
that they do not become fierce like a tiger.  (1997, W. W. Norton and
Co., ISBN 0-393-03894-2, page 171)



The if Special Form




A third special form, in addition to defun and let, is the
conditional if.  This form is used to instruct the computer to
make decisions.  You can write function definitions without using
if, but it is used often enough, and is important enough, to be
included here.  It is used, for example, in the code for the
function beginning-of-buffer.
The basic idea behind an if, is that “if a test is true,
then an expression is evaluated.”  If the test is not true, the
expression is not evaluated.  For example, you might make a decision
such as, “if it is warm and sunny, then go to the beach!”
if in more detail



An if expression written in Lisp does not use the word `then';
the test and the action are the second and third elements of the list
whose first element is if.  Nonetheless, the test part of an
if expression is often called the if-part and the second
argument is often called the then-part.
Also, when an if expression is written, the true-or-false-test
is usually written on the same line as the symbol if, but the
action to carry out if the test is true, the “then-part”, is written
on the second and subsequent lines.  This makes the if
expression easier to read.

(if true-or-false-test
    action-to-carry-out-if-test-is-true)
     
The true-or-false-test will be an expression that
is evaluated by the Lisp interpreter.
Here is an example that you can evaluate in the usual manner.  The test
is whether the number 5 is greater than the number 4.  Since it is, the
message ‘5 is greater than 4!’ will be printed.

(if (> 5 4)                             ; if-part
    (message "5 is greater than 4!"))   ; then-part

(The function > tests whether its first argument is greater than
its second argument and returns true if it is.)

Of course, in actual use, the test in an if expression will not
be fixed for all time as it is by the expression (> 5 4).
Instead, at least one of the variables used in the test will be bound to
a value that is not known ahead of time.  (If the value were known ahead
of time, we would not need to run the test!)
For example, the value may be bound to an argument of a function
definition.  In the following function definition, the character of the
animal is a value that is passed to the function.  If the value bound to
characteristic is fierce, then the message, ‘It's a
tiger!’ will be printed; otherwise, nil will be returned.

(defun type-of-animal (characteristic)
  "Print message in echo area depending on CHARACTERISTIC.
If the CHARACTERISTIC is the symbol `fierce',
then warn of a tiger."
  (if (equal characteristic 'fierce)
      (message "It's a tiger!")))

If you are reading this inside of GNU Emacs, you can evaluate the
function definition in the usual way to install it in Emacs, and then you
can evaluate the following two expressions to see the results:

(type-of-animal 'fierce)

(type-of-animal 'zebra)


When you evaluate (type-of-animal 'fierce), you will see the
following message printed in the echo area: "It's a tiger!"; and
when you evaluate (type-of-animal 'zebra) you will see nil
printed in the echo area.

The type-of-animal Function in Detail



Let's look at the type-of-animal function in detail.
The function definition for type-of-animal was written by filling
the slots of two templates, one for a function definition as a whole, and
a second for an if expression.
The template for every function that is not interactive is:

(defun name-of-function (argument-list)
  "documentation…"
  body…)

The parts of the function that match this template look like this:

(defun type-of-animal (characteristic)
  "Print message in echo area depending on CHARACTERISTIC.
If the CHARACTERISTIC is the symbol `fierce',
then warn of a tiger."
  body: the if expression)

The name of function is type-of-animal; it is passed the value
of one argument.  The argument list is followed by a multi-line
documentation string.  The documentation string is included in the
example because it is a good habit to write documentation string for
every function definition.  The body of the function definition
consists of the if expression.
The template for an if expression looks like this:

(if true-or-false-test
    action-to-carry-out-if-the-test-returns-true)

In the type-of-animal function, the code for the if
looks like this:

(if (equal characteristic 'fierce)
    (message "It's a tiger!")))

Here, the true-or-false-test is the expression:

(equal characteristic 'fierce)

In Lisp, equal is a function that determines whether its first
argument is equal to its second argument.  The second argument is the
quoted symbol 'fierce and the first argument is the value of the
symbol characteristic—in other words, the argument passed to
this function.
In the first exercise of type-of-animal, the argument
fierce is passed to type-of-animal.  Since fierce
is equal to fierce, the expression, (equal characteristic
'fierce), returns a value of true.  When this happens, the if
evaluates the second argument or then-part of the if:
(message "It's tiger!").
On the other hand, in the second exercise of type-of-animal, the
argument zebra is passed to type-of-animal.  zebra
is not equal to fierce, so the then-part is not evaluated and
nil is returned by the if expression.


If–then–else Expressions




An if expression may have an optional third argument, called
the else-part, for the case when the true-or-false-test returns
false.  When this happens, the second argument or then-part of the
overall if expression is not evaluated, but the third or
else-part is evaluated.  You might think of this as the cloudy
day alternative for the decision “if it is warm and sunny, then go to
the beach, else read a book!”.
The word “else” is not written in the Lisp code; the else-part of an
if expression comes after the then-part.  In the written Lisp, the
else-part is usually written to start on a line of its own and is
indented less than the then-part:

(if true-or-false-test
    action-to-carry-out-if-the-test-returns-true
  action-to-carry-out-if-the-test-returns-false)

For example, the following if expression prints the message ‘4
is not greater than 5!’ when you evaluate it in the usual way:

(if (> 4 5)                               ; if-part
    (message "4 falsely greater than 5!") ; then-part
  (message "4 is not greater than 5!"))   ; else-part

Note that the different levels of indentation make it easy to
distinguish the then-part from the else-part.  (GNU Emacs has several
commands that automatically indent if expressions correctly.
See GNU Emacs Helps You Type Lists.)
We can extend the type-of-animal function to include an
else-part by simply incorporating an additional part to the if
expression.
You can see the consequences of doing this if you evaluate the following
version of the type-of-animal function definition to install it
and then evaluate the two subsequent expressions to pass different
arguments to the function.

(defun type-of-animal (characteristic)  ; Second version.
  "Print message in echo area depending on CHARACTERISTIC.
If the CHARACTERISTIC is the symbol `fierce',
then warn of a tiger;
else say it's not fierce."
  (if (equal characteristic 'fierce)
      (message "It's a tiger!")
    (message "It's not fierce!")))


(type-of-animal 'fierce)

(type-of-animal 'zebra)


When you evaluate (type-of-animal 'fierce), you will see the
following message printed in the echo area: "It's a tiger!"; but
when you evaluate (type-of-animal 'zebra), you will see
"It's not fierce!".
(Of course, if the characteristic were ferocious, the
message "It's not fierce!" would be printed; and it would be
misleading!  When you write code, you need to take into account the
possibility that some such argument will be tested by the if
and write your program accordingly.)

Truth and Falsehood in Emacs Lisp




There is an important aspect to the truth test in an if
expression.  So far, we have spoken of `true' and `false' as values of
predicates as if they were new kinds of Emacs Lisp objects.  In fact,
`false' is just our old friend nil.  Anything else—anything
at all—is `true'.
The expression that tests for truth is interpreted as true
if the result of evaluating it is a value that is not nil.  In
other words, the result of the test is considered true if the value
returned is a number such as 47, a string such as "hello", or a
symbol (other than nil) such as flowers, or a list (so
long as it is not empty), or even a buffer!
An explanation of nil



Before illustrating a test for truth, we need an explanation of nil.
In Emacs Lisp, the symbol nil has two meanings.  First, it means the
empty list.  Second, it means false and is the value returned when a
true-or-false-test tests false.  nil can be written as an empty
list, (), or as nil.  As far as the Lisp interpreter is
concerned, () and nil are the same.  Humans, however, tend
to use nil for false and () for the empty list.
In Emacs Lisp, any value that is not nil—is not the empty
list—is considered true.  This means that if an evaluation returns
something that is not an empty list, an if expression will test
true.  For example, if a number is put in the slot for the test, it
will be evaluated and will return itself, since that is what numbers
do when evaluated.  In this conditional, the if expression will
test true.  The expression tests false only when nil, an empty
list, is returned by evaluating the expression.
You can see this by evaluating the two expressions in the following examples.
In the first example, the number 4 is evaluated as the test in the
if expression and returns itself; consequently, the then-part
of the expression is evaluated and returned: ‘true’ appears in
the echo area.  In the second example, the nil indicates false;
consequently, the else-part of the expression is evaluated and
returned: ‘false’ appears in the echo area.

(if 4
    'true
  'false)
     
(if nil
    'true
  'false)

Incidentally, if some other useful value is not available for a test that
returns true, then the Lisp interpreter will return the symbol t
for true.  For example, the expression (> 5 4) returns t
when evaluated, as you can see by evaluating it in the usual way:

(> 5 4)

On the other hand, this function returns nil if the test is false.

(> 4 5)



save-excursion




The save-excursion function is the fourth and final special form
that we will discuss in this chapter.
In Emacs Lisp programs used for editing, the save-excursion
function is very common.  It saves the location of point and mark,
executes the body of the function, and then restores point and mark to
their previous positions if their locations were changed.  Its primary
purpose is to keep the user from being surprised and disturbed by
unexpected movement of point or mark.
Point and Mark



Before discussing save-excursion, however, it may be useful
first to review what point and mark are in GNU Emacs.  Point is
the current location of the cursor.  Wherever the cursor
is, that is point.  More precisely, on terminals where the cursor
appears to be on top of a character, point is immediately before the
character.  In Emacs Lisp, point is an integer.  The first character in
a buffer is number one, the second is number two, and so on.  The
function point returns the current position of the cursor as a
number.  Each buffer has its own value for point.
The mark is another position in the buffer; its value can be set
with a command such as C-SPC (set-mark-command).  If
a mark has been set, you can use the command C-x C-x
(exchange-point-and-mark) to cause the cursor to jump to the mark
and set the mark to be the previous position of point.  In addition, if
you set another mark, the position of the previous mark is saved in the
mark ring.  Many mark positions can be saved this way.  You can jump the
cursor to a saved mark by typing C-u C-SPC one or more
times.
The part of the buffer between point and mark is called the
region.  Numerous commands work on the region, including
center-region, count-lines-region, kill-region, and
print-region.
The save-excursion special form saves the locations of point and
mark and restores those positions after the code within the body of the
special form is evaluated by the Lisp interpreter.  Thus, if point were
in the beginning of a piece of text and some code moved point to the end
of the buffer, the save-excursion would put point back to where
it was before, after the expressions in the body of the function were
evaluated.
In Emacs, a function frequently moves point as part of its internal
workings even though a user would not expect this.  For example,
count-lines-region moves point.  To prevent the user from being
bothered by jumps that are both unexpected and (from the user's point of
view) unnecessary, save-excursion is often used to keep point and
mark in the location expected by the user.  The use of
save-excursion is good housekeeping.
To make sure the house stays clean, save-excursion restores the
values of point and mark even if something goes wrong in the code inside
of it (or, to be more precise and to use the proper jargon, “in case of
abnormal exit”).  This feature is very helpful.
In addition to recording the values of point and mark,
save-excursion keeps track of the current buffer, and restores
it, too.  This means you can write code that will change the buffer and
have save-excursion switch you back to the original buffer.
This is how save-excursion is used in append-to-buffer.
(See The Definition of append-to-buffer.)

Template for a save-excursion Expression



The template for code using save-excursion is simple:

(save-excursion
  body…)
     
The body of the function is one or more expressions that will be
evaluated in sequence by the Lisp interpreter.  If there is more than
one expression in the body, the value of the last one will be returned
as the value of the save-excursion function.  The other
expressions in the body are evaluated only for their side effects; and
save-excursion itself is used only for its side effect (which
is restoring the positions of point and mark).
In more detail, the template for a save-excursion expression
looks like this:

(save-excursion
  first-expression-in-body
  second-expression-in-body
  third-expression-in-body
   …
  last-expression-in-body)

An expression, of course, may be a symbol on its own or a list.
In Emacs Lisp code, a save-excursion expression often occurs
within the body of a let expression.  It looks like this:

(let varlist
  (save-excursion
    body…))



Review



In the last few chapters we have introduced a fair number of functions
and special forms.  Here they are described in brief, along with a few
similar functions that have not been mentioned yet.
	eval-last-sexp
	Evaluate the last symbolic expression before the current location of
point.  The value is printed in the echo area unless the function is
invoked with an argument; in that case, the output is printed in the
current buffer.  This command is normally bound to C-x C-e.

	defun
	Define function.  This special form has up to five parts: the name,
a template for the arguments that will be passed to the function,
documentation, an optional interactive declaration, and the body of the
definition.
For example, in an early version of Emacs, the function definition was
as follows.  (It is slightly more complex now that it seeks the first
non-whitespace character rather than the first visible character.)

(defun back-to-indentation ()
  "Move point to first visible character on line."
  (interactive)
  (beginning-of-line 1)
  (skip-chars-forward " \t"))


	interactive
	Declare to the interpreter that the function can be used
interactively.  This special form may be followed by a string with one
or more parts that pass the information to the arguments of the
function, in sequence.  These parts may also tell the interpreter to
prompt for information.  Parts of the string are separated by
newlines, ‘\n’.
Common code characters are:
	b
	The name of an existing buffer.

	f
	The name of an existing file.

	p
	The numeric prefix argument.  (Note that this `p' is lower case.)

	r
	Point and the mark, as two numeric arguments, smallest first.  This
is the only code letter that specifies two successive arguments
rather than one.



See See section ``Code Characters for @samp{interactive}'' in The GNU Emacs Lisp Reference Manual, for a complete list of
code characters.

	let
	Declare that a list of variables is for use within the body of the
let and give them an initial value, either nil or a
specified value; then evaluate the rest of the expressions in the body
of the let and return the value of the last one.  Inside the
body of the let, the Lisp interpreter does not see the values of
the variables of the same names that are bound outside of the
let.
For example,

(let ((foo (buffer-name))
      (bar (buffer-size)))
  (message
   "This buffer is %s and has %d characters."
   foo bar))


	save-excursion
	Record the values of point and mark and the current buffer before
evaluating the body of this special form.  Restore the values of point
and mark and buffer afterward.
For example,

(message "We are %d characters into this buffer."
         (- (point)
            (save-excursion
              (goto-char (point-min)) (point))))


	if
	Evaluate the first argument to the function; if it is true, evaluate
the second argument; else evaluate the third argument, if there is one.
The if special form is called a conditional.  There are
other conditionals in Emacs Lisp, but if is perhaps the most
commonly used.
For example,

(if (= 22 emacs-major-version)
    (message "This is version 22 Emacs")
  (message "This is not version 22 Emacs"))


	<, >, <=, >=
	The < function tests whether its first argument is smaller than
its second argument.  A corresponding function, >, tests whether
the first argument is greater than the second.  Likewise, <=
tests whether the first argument is less than or equal to the second and
>= tests whether the first argument is greater than or equal to
the second.  In all cases, both arguments must be numbers or markers
(markers indicate positions in buffers).

	=
	The = function tests whether two arguments, both numbers or
markers, are equal.

	equal, eq
	Test whether two objects are the same.  equal uses one meaning
of the word `same' and eq uses another:  equal returns
true if the two objects have a similar structure and contents, such as
two copies of the same book.  On the other hand, eq, returns
true if both arguments are actually the same object.


	string<, string-lessp, string=, string-equal
	The string-lessp function tests whether its first argument is
smaller than the second argument.  A shorter, alternative name for the
same function (a defalias) is string<.
The arguments to string-lessp must be strings or symbols; the
ordering is lexicographic, so case is significant.  The print names of
symbols are used instead of the symbols themselves.
An empty string, ‘""’, a string with no characters in it, is
smaller than any string of characters.
string-equal provides the corresponding test for equality.  Its
shorter, alternative name is string=.  There are no string test
functions that correspond to >, >=, or <=.

	message
	Print a message in the echo area. The first argument is a string that
can contain ‘%s’, ‘%d’, or ‘%c’ to print the value of
arguments that follow the string.  The argument used by ‘%s’ must
be a string or a symbol; the argument used by ‘%d’ must be a
number.  The argument used by ‘%c’ must be an ascii code
number; it will be printed as the character with that ascii code.
(Various other %-sequences have not been mentioned.)

	setq, set
	The setq function sets the value of its first argument to the
value of the second argument.  The first argument is automatically
quoted by setq.  It does the same for succeeding pairs of
arguments.  Another function, set, takes only two arguments and
evaluates both of them before setting the value returned by its first
argument to the value returned by its second argument.

	buffer-name
	Without an argument, return the name of the buffer, as a string.

	buffer-file-name
	Without an argument, return the name of the file the buffer is
visiting.

	current-buffer
	Return the buffer in which Emacs is active; it may not be
the buffer that is visible on the screen.

	other-buffer
	Return the most recently selected buffer (other than the buffer passed
to other-buffer as an argument and other than the current
buffer).

	switch-to-buffer
	Select a buffer for Emacs to be active in and display it in the current
window so users can look at it.  Usually bound to C-x b.

	set-buffer
	Switch Emacs' attention to a buffer on which programs will run.  Don't
alter what the window is showing.

	buffer-size
	Return the number of characters in the current buffer.

	point
	Return the value of the current position of the cursor, as an
integer counting the number of characters from the beginning of the
buffer.

	point-min
	Return the minimum permissible value of point in
the current buffer.  This is 1, unless narrowing is in effect.

	point-max
	Return the value of the maximum permissible value of point in the
current buffer.  This is the end of the buffer, unless narrowing is in
effect.




Exercises



	Write a non-interactive function that doubles the value of its
argument, a number.  Make that function interactive.

	Write a function that tests whether the current value of
fill-column is greater than the argument passed to the function,
and if so, prints an appropriate message.




Chapter 4. A Few Buffer–Related Functions



In this chapter we study in detail several of the functions used in GNU
Emacs.  This is called a “walk-through”.  These functions are used as
examples of Lisp code, but are not imaginary examples; with the
exception of the first, simplified function definition, these functions
show the actual code used in GNU Emacs.  You can learn a great deal from
these definitions.  The functions described here are all related to
buffers.  Later, we will study other functions.
Finding More Information



In this walk-through, I will describe each new function as we come to
it, sometimes in detail and sometimes briefly.  If you are interested,
you can get the full documentation of any Emacs Lisp function at any
time by typing C-h f and then the name of the function (and then
RET).  Similarly, you can get the full documentation for a
variable by typing C-h v and then the name of the variable (and
then RET).

Also, describe-function will tell you the location of the
function definition.
Put point into the name of the file that contains the function and
press the RET key.  In this case, RET means
push-button rather than `return' or `enter'.  Emacs will take
you directly to the function definition.
More generally, if you want to see a function in its original source
file, you can use the find-tag function to jump to it.
find-tag works with a wide variety of languages, not just
Lisp, and C, and it works with non-programming text as well.  For
example, find-tag will jump to the various nodes in the
Texinfo source file of this document.
The find-tag function depends on `tags tables' that record
the locations of the functions, variables, and other items to which
find-tag jumps.
To use the find-tag command, type M-.  (i.e., press the
period key while holding down the META key, or else type the
ESC key and then type the period key), and then, at the prompt,
type in the name of the function whose source code you want to see,
such as mark-whole-buffer, and then type RET.  Emacs will
switch buffers and display the source code for the function on your
screen.  To switch back to your current buffer, type C-x b
RET.  (On some keyboards, the META key is labelled
ALT.)
Depending on how the initial default values of your copy of Emacs are
set, you may also need to specify the location of your `tags table',
which is a file called TAGS.  For example, if you are
interested in Emacs sources, the tags table you will most likely want,
if it has already been created for you, will be in a subdirectory of
the /usr/local/share/emacs/ directory; thus you would use the
M-x visit-tags-table command and specify a pathname such as
/usr/local/share/emacs/22.1.1/lisp/TAGS.  If the tags table
has not already been created, you will have to create it yourself.  It
will be in a file such as /usr/local/src/emacs/src/TAGS.
To create a TAGS file in a specific directory, switch to that
directory in Emacs using M-x cd command, or list the directory
with C-x d (dired).  Then run the compile command, with
etags *.el as the command to execute:

M-x compile RET etags *.el RET

For more information, see Create Your Own TAGS File.
After you become more familiar with Emacs Lisp, you will find that you will
frequently use find-tag to navigate your way around source code;
and you will create your own TAGS tables.
Incidentally, the files that contain Lisp code are conventionally
called libraries.  The metaphor is derived from that of a
specialized library, such as a law library or an engineering library,
rather than a general library.  Each library, or file, contains
functions that relate to a particular topic or activity, such as
abbrev.el for handling abbreviations and other typing
shortcuts, and help.el for on-line help.  (Sometimes several
libraries provide code for a single activity, as the various
rmail… files provide code for reading electronic mail.)
In The GNU Emacs Manual, you will see sentences such as “The
C-h p command lets you search the standard Emacs Lisp libraries
by topic keywords.”


A Simplified beginning-of-buffer Definition




The beginning-of-buffer command is a good function to start with
since you are likely to be familiar with it and it is easy to
understand.  Used as an interactive command, beginning-of-buffer
moves the cursor to the beginning of the buffer, leaving the mark at the
previous position.  It is generally bound to M-<.
In this section, we will discuss a shortened version of the function
that shows how it is most frequently used.  This shortened function
works as written, but it does not contain the code for a complex option.
In another section, we will describe the entire function.
(See Complete Definition of beginning-of-buffer.)
Before looking at the code, let's consider what the function
definition has to contain: it must include an expression that makes
the function interactive so it can be called by typing M-x
beginning-of-buffer or by typing a keychord such as M-<; it
must include code to leave a mark at the original position in the
buffer; and it must include code to move the cursor to the beginning
of the buffer.
Here is the complete text of the shortened version of the function:

(defun simplified-beginning-of-buffer ()
  "Move point to the beginning of the buffer;
leave mark at previous position."
  (interactive)
  (push-mark)
  (goto-char (point-min)))

Like all function definitions, this definition has five parts following
the special form defun:
	The name: in this example, simplified-beginning-of-buffer.

	A list of the arguments: in this example, an empty list, (),

	The documentation string.

	The interactive expression.

	The body.



In this function definition, the argument list is empty; this means that
this function does not require any arguments.  (When we look at the
definition for the complete function, we will see that it may be passed
an optional argument.)
The interactive expression tells Emacs that the function is intended to
be used interactively.  In this example, interactive does not have
an argument because simplified-beginning-of-buffer does not
require one.
The body of the function consists of the two lines:

(push-mark)
(goto-char (point-min))

The first of these lines is the expression, (push-mark).  When
this expression is evaluated by the Lisp interpreter, it sets a mark at
the current position of the cursor, wherever that may be.  The position
of this mark is saved in the mark ring.
The next line is (goto-char (point-min)).  This expression
jumps the cursor to the minimum point in the buffer, that is, to the
beginning of the buffer (or to the beginning of the accessible portion
of the buffer if it is narrowed.  See Narrowing and Widening.)
The push-mark command sets a mark at the place where the cursor
was located before it was moved to the beginning of the buffer by the
(goto-char (point-min)) expression.  Consequently, you can, if
you wish, go back to where you were originally by typing C-x C-x.
That is all there is to the function definition!
When you are reading code such as this and come upon an unfamiliar
function, such as goto-char, you can find out what it does by
using the describe-function command.  To use this command, type
C-h f and then type in the name of the function and press
RET.  The describe-function command will print the
function's documentation string in a *Help* window.  For
example, the documentation for goto-char is:

Set point to POSITION, a number or marker.
Beginning of buffer is position (point-min), end is (point-max).

The function's one argument is the desired position.
(The prompt for describe-function will offer you the symbol
under or preceding the cursor, so you can save typing by positioning
the cursor right over or after the function and then typing C-h f
RET.)
The end-of-buffer function definition is written in the same way as
the beginning-of-buffer definition except that the body of the
function contains the expression (goto-char (point-max)) in place
of (goto-char (point-min)).

The Definition of mark-whole-buffer




The mark-whole-buffer function is no harder to understand than the
simplified-beginning-of-buffer function.  In this case, however,
we will look at the complete function, not a shortened version.
The mark-whole-buffer function is not as commonly used as the
beginning-of-buffer function, but is useful nonetheless: it
marks a whole buffer as a region by putting point at the beginning and
a mark at the end of the buffer.  It is generally bound to C-x
h.
An overview of mark-whole-buffer



In GNU Emacs 22, the code for the complete function looks like this:

(defun mark-whole-buffer ()
  "Put point at beginning and mark at end of buffer.
You probably should not use this function in Lisp programs;
it is usually a mistake for a Lisp function to use any subroutine
that uses or sets the mark."
  (interactive)
  (push-mark (point))
  (push-mark (point-max) nil t)
  (goto-char (point-min)))
     
Like all other functions, the mark-whole-buffer function fits
into the template for a function definition.  The template looks like
this:

(defun name-of-function (argument-list)
  "documentation…"
  (interactive-expression…)
  body…)

Here is how the function works: the name of the function is
mark-whole-buffer; it is followed by an empty argument list,
‘()’, which means that the function does not require arguments.
The documentation comes next.
The next line is an (interactive) expression that tells Emacs
that the function will be used interactively.  These details are similar
to the simplified-beginning-of-buffer function described in the
previous section.

Body of mark-whole-buffer



The body of the mark-whole-buffer function consists of three
lines of code:

(push-mark (point))
(push-mark (point-max) nil t)
(goto-char (point-min))

The first of these lines is the expression, (push-mark (point)).
This line does exactly the same job as the first line of the body of
the simplified-beginning-of-buffer function, which is written
(push-mark).  In both cases, the Lisp interpreter sets a mark
at the current position of the cursor.
I don't know why the expression in mark-whole-buffer is written
(push-mark (point)) and the expression in
beginning-of-buffer is written (push-mark).  Perhaps
whoever wrote the code did not know that the arguments for
push-mark are optional and that if push-mark is not
passed an argument, the function automatically sets mark at the
location of point by default.  Or perhaps the expression was written
so as to parallel the structure of the next line.  In any case, the
line causes Emacs to determine the position of point and set a mark
there.
In earlier versions of GNU Emacs, the next line of
mark-whole-buffer was (push-mark (point-max)).  This
expression sets a mark at the point in the buffer that has the highest
number.  This will be the end of the buffer (or, if the buffer is
narrowed, the end of the accessible portion of the buffer.
See Narrowing and Widening, for more about
narrowing.)  After this mark has been set, the previous mark, the one
set at point, is no longer set, but Emacs remembers its position, just
as all other recent marks are always remembered.  This means that you
can, if you wish, go back to that position by typing C-u
C-SPC twice.
In GNU Emacs 22, the (point-max) is slightly more complicated.
The line reads

(push-mark (point-max) nil t)

The expression works nearly the same as before.  It sets a mark at the
highest numbered place in the buffer that it can.  However, in this
version, push-mark has two additional arguments.  The second
argument to push-mark is nil.  This tells the function
it should display a message that says `Mark set' when it pushes
the mark.  The third argument is t.  This tells
push-mark to activate the mark when Transient Mark mode is
turned on.  Transient Mark mode highlights the currently active
region.  It is often turned off.
Finally, the last line of the function is (goto-char
(point-min))).  This is written exactly the same way as it is written
in beginning-of-buffer.  The expression moves the cursor to
the minimum point in the buffer, that is, to the beginning of the buffer
(or to the beginning of the accessible portion of the buffer).  As a
result of this, point is placed at the beginning of the buffer and mark
is set at the end of the buffer.  The whole buffer is, therefore, the
region.


The Definition of append-to-buffer




The append-to-buffer command is more complex than the
mark-whole-buffer command.  What it does is copy the region
(that is, the part of the buffer between point and mark) from the
current buffer to a specified buffer.
An Overview of append-to-buffer



The append-to-buffer command uses the
insert-buffer-substring function to copy the region.
insert-buffer-substring is described by its name: it takes a
string of characters from part of a buffer, a “substring”, and
inserts them into another buffer.
Most of append-to-buffer is
concerned with setting up the conditions for
insert-buffer-substring to work: the code must specify both the
buffer to which the text will go, the window it comes from and goes
to, and the region that will be copied.
Here is the complete text of the function:

(defun append-to-buffer (buffer start end)
  "Append to specified buffer the text of the region.
It is inserted into that buffer before its point.
     
When calling from a program, give three arguments:
BUFFER (or buffer name), START and END.
START and END specify the portion of the current buffer to be copied."
  (interactive
   (list (read-buffer "Append to buffer: " (other-buffer
                                            (current-buffer) t))
         (region-beginning) (region-end)))
  (let ((oldbuf (current-buffer)))
    (save-excursion
      (let* ((append-to (get-buffer-create buffer))
             (windows (get-buffer-window-list append-to t t))
             point)
        (set-buffer append-to)
        (setq point (point))
        (barf-if-buffer-read-only)
        (insert-buffer-substring oldbuf start end)
        (dolist (window windows)
          (when (= (window-point window) point)
            (set-window-point window (point))))))))

The function can be understood by looking at it as a series of
filled-in templates.
The outermost template is for the function definition.  In this
function, it looks like this (with several slots filled in):

(defun append-to-buffer (buffer start end)
  "documentation…"
  (interactive …)
  body…)

The first line of the function includes its name and three arguments.
The arguments are the buffer to which the text will be copied, and
the start and end of the region in the current buffer that
will be copied.
The next part of the function is the documentation, which is clear and
complete.  As is conventional, the three arguments are written in
upper case so you will notice them easily.  Even better, they are
described in the same order as in the argument list.
Note that the documentation distinguishes between a buffer and its
name.  (The function can handle either.)

The append-to-buffer Interactive Expression



Since the append-to-buffer function will be used interactively,
the function must have an interactive expression.  (For a
review of interactive, see Making a Function Interactive.)  The expression reads as follows:

(interactive
 (list (read-buffer
        "Append to buffer: "
        (other-buffer (current-buffer) t))
       (region-beginning)
       (region-end)))

This expression is not one with letters standing for parts, as
described earlier.  Instead, it starts a list with these parts:
The first part of the list is an expression to read the name of a
buffer and return it as a string.  That is read-buffer.  The
function requires a prompt as its first argument, ‘"Append to
buffer: "’.  Its second argument tells the command what value to
provide if you don't specify anything.
In this case that second argument is an expression containing the
function other-buffer, an exception, and a ‘t’, standing
for true.
The first argument to other-buffer, the exception, is yet
another function, current-buffer.  That is not going to be
returned.  The second argument is the symbol for true, t. that
tells other-buffer that it may show visible buffers (except in
this case, it will not show the current buffer, which makes sense).
The expression looks like this:

(other-buffer (current-buffer) t)

The second and third arguments to the list expression are
(region-beginning) and (region-end).  These two
functions specify the beginning and end of the text to be appended.
Originally, the command used the letters ‘B’ and ‘r’.
The whole interactive expression looked like this:

(interactive "BAppend to buffer: \nr")

But when that was done, the default value of the buffer switched to
was invisible.  That was not wanted.
(The prompt was separated from the second argument with a newline,
‘\n’.  It was followed by an ‘r’ that told Emacs to bind the
two arguments that follow the symbol buffer in the function's
argument list (that is, start and end) to the values of
point and mark.  That argument worked fine.)

The Body of append-to-buffer



The body of the append-to-buffer function begins with let.
As we have seen before (see let), the purpose of a
let expression is to create and give initial values to one or
more variables that will only be used within the body of the
let.  This means that such a variable will not be confused with
any variable of the same name outside the let expression.
We can see how the let expression fits into the function as a
whole by showing a template for append-to-buffer with the
let expression in outline:

(defun append-to-buffer (buffer start end)
  "documentation…"
  (interactive …)
  (let ((variable value))
        body…)

The let expression has three elements:
	The symbol let;

	A varlist containing, in this case, a single two-element list,
(variable value);

	The body of the let expression.



In the append-to-buffer function, the varlist looks like this:

(oldbuf (current-buffer))

In this part of the let expression, the one variable,
oldbuf, is bound to the value returned by the
(current-buffer) expression.  The variable, oldbuf, is
used to keep track of the buffer in which you are working and from
which you will copy.
The element or elements of a varlist are surrounded by a set of
parentheses so the Lisp interpreter can distinguish the varlist from
the body of the let.  As a consequence, the two-element list
within the varlist is surrounded by a circumscribing set of parentheses.
The line looks like this:

(let ((oldbuf (current-buffer)))
  … )

The two parentheses before oldbuf might surprise you if you did
not realize that the first parenthesis before oldbuf marks the
boundary of the varlist and the second parenthesis marks the beginning
of the two-element list, (oldbuf (current-buffer)).

save-excursion in append-to-buffer



The body of the let expression in append-to-buffer
consists of a save-excursion expression.
The save-excursion function saves the locations of point and
mark, and restores them to those positions after the expressions in the
body of the save-excursion complete execution.  In addition,
save-excursion keeps track of the original buffer, and
restores it.  This is how save-excursion is used in
append-to-buffer.
Incidentally, it is worth noting here that a Lisp function is normally
formatted so that everything that is enclosed in a multi-line spread is
indented more to the right than the first symbol.  In this function
definition, the let is indented more than the defun, and
the save-excursion is indented more than the let, like
this:

(defun …
  …
  …
  (let…
    (save-excursion
      …

This formatting convention makes it easy to see that the lines in
the body of the save-excursion are enclosed by the parentheses
associated with save-excursion, just as the
save-excursion itself is enclosed by the parentheses associated
with the let:

(let ((oldbuf (current-buffer)))
  (save-excursion
    …
    (set-buffer …)
    (insert-buffer-substring oldbuf start end)
    …))

The use of the save-excursion function can be viewed as a process
of filling in the slots of a template:

(save-excursion
  first-expression-in-body
  second-expression-in-body
   …
  last-expression-in-body)

In this function, the body of the save-excursion contains only
one expression, the let* expression.  You know about a
let function.  The let* function is different.  It has a
‘*’ in its name.  It enables Emacs to set each variable in its
varlist in sequence, one after another.
Its critical feature is that variables later in the varlist can make
use of the values to which Emacs set variables earlier in the varlist.
See The let* expression.
We will skip functions like let* and focus on two: the
set-buffer function and the insert-buffer-substring
function.
In the old days, the set-buffer expression was simply

(set-buffer (get-buffer-create buffer))

but now it is

(set-buffer append-to)

append-to is bound to (get-buffer-create buffer) earlier
on in the let* expression.  That extra binding would not be
necessary except for that append-to is used later in the
varlist as an argument to get-buffer-window-list.
The append-to-buffer function definition inserts text from the
buffer in which you are currently to a named buffer.  It happens that
insert-buffer-substring copies text from another buffer to the
current buffer, just the reverse—that is why the
append-to-buffer definition starts out with a let that
binds the local symbol oldbuf to the value returned by
current-buffer.
The insert-buffer-substring expression looks like this:

(insert-buffer-substring oldbuf start end)

The insert-buffer-substring function copies a string
from the buffer specified as its first argument and inserts the
string into the present buffer.  In this case, the argument to
insert-buffer-substring is the value of the variable created
and bound by the let, namely the value of oldbuf, which
was the current buffer when you gave the append-to-buffer
command.
After insert-buffer-substring has done its work,
save-excursion will restore the action to the original buffer
and append-to-buffer will have done its job.
Written in skeletal form, the workings of the body look like this:

(let (bind-oldbuf-to-value-of-current-buffer)
  (save-excursion                       ; Keep track of buffer.
    change-buffer
    insert-substring-from-oldbuf-into-buffer)

  change-back-to-original-buffer-when-finished
let-the-local-meaning-of-oldbuf-disappear-when-finished

In summary, append-to-buffer works as follows: it saves the
value of the current buffer in the variable called oldbuf.  It
gets the new buffer (creating one if need be) and switches Emacs'
attention to it.  Using the value of oldbuf, it inserts the
region of text from the old buffer into the new buffer; and then using
save-excursion, it brings you back to your original buffer.
In looking at append-to-buffer, you have explored a fairly
complex function.  It shows how to use let and
save-excursion, and how to change to and come back from another
buffer.  Many function definitions use let,
save-excursion, and set-buffer this way.


Review



Here is a brief summary of the various functions discussed in this chapter.
	describe-function, describe-variable
	Print the documentation for a function or variable.
Conventionally bound to C-h f and C-h v.

	find-tag
	Find the file containing the source for a function or variable and
switch buffers to it, positioning point at the beginning of the item.
Conventionally bound to M-. (that's a period following the
META key).

	save-excursion
	Save the location of point and mark and restore their values after the
arguments to save-excursion have been evaluated.  Also, remember
the current buffer and return to it.

	push-mark
	Set mark at a location and record the value of the previous mark on the
mark ring.  The mark is a location in the buffer that will keep its
relative position even if text is added to or removed from the buffer.

	goto-char
	Set point to the location specified by the value of the argument, which
can be a number, a marker,  or an expression that returns the number of
a position, such as (point-min).

	insert-buffer-substring
	Copy a region of text from a buffer that is passed to the function as
an argument and insert the region into the current buffer.

	mark-whole-buffer
	Mark the whole buffer as a region.  Normally bound to C-x h.

	set-buffer
	Switch the attention of Emacs to another buffer, but do not change the
window being displayed.  Used when the program rather than a human is
to work on a different buffer.

	get-buffer-create, get-buffer
	Find a named buffer or create one if a buffer of that name does not
exist.  The get-buffer function returns nil if the named
buffer does not exist.




Exercises



	Write your own simplified-end-of-buffer function definition;
then test it to see whether it works.

	Use if and get-buffer to write a function that prints a
message telling you whether a buffer exists.

	Using find-tag, find the source for the copy-to-buffer
function.




Chapter 5. A Few More Complex Functions



In this chapter, we build on what we have learned in previous chapters
by looking at more complex functions.  The copy-to-buffer
function illustrates use of two save-excursion expressions in
one definition, while the insert-buffer function illustrates
use of an asterisk in an interactive expression, use of
or, and the important distinction between a name and the object
to which the name refers.
The Definition of copy-to-buffer




After understanding how append-to-buffer works, it is easy to
understand copy-to-buffer.  This function copies text into a
buffer, but instead of adding to the second buffer, it replaces all the
previous text in the second buffer.
The body of copy-to-buffer looks like this,

…
(interactive "BCopy to buffer: \nr")
(let ((oldbuf (current-buffer)))
  (with-current-buffer (get-buffer-create buffer)
    (barf-if-buffer-read-only)
    (erase-buffer)
    (save-excursion
      (insert-buffer-substring oldbuf start end)))))

The copy-to-buffer function has a simpler interactive
expression than append-to-buffer.
The definition then says

(with-current-buffer (get-buffer-create buffer) …

First, look at the earliest inner expression; that is evaluated first.
That expression starts with get-buffer-create buffer.  The
function tells the computer to use the buffer with the name specified
as the one to which you are copying, or if such a buffer does not
exist, to create it.  Then, the with-current-buffer function
evaluates its body with that buffer temporarily current.
(This demonstrates another way to shift the computer's attention but
not the user's.  The append-to-buffer function showed how to do
the same with save-excursion and set-buffer.
with-current-buffer is a newer, and arguably easier,
mechanism.)
The barf-if-buffer-read-only function sends you an error
message saying the buffer is read-only if you cannot modify it.
The next line has the erase-buffer function as its sole
contents.  That function erases the buffer.
Finally, the last two lines contain the save-excursion
expression with insert-buffer-substring as its body.
The  insert-buffer-substring expression copies the text from
the buffer you are in (and you have not seen the computer shift its
attention, so you don't know that that buffer is now called
oldbuf).
Incidentally, this is what is meant by `replacement'.  To replace text,
Emacs erases the previous text and then inserts new text.
In outline, the body of copy-to-buffer looks like this:

(let (bind-oldbuf-to-value-of-current-buffer)
    (with-the-buffer-you-are-copying-to
      (but-do-not-erase-or-copy-to-a-read-only-buffer)
      (erase-buffer)
      (save-excursion
        insert-substring-from-oldbuf-into-buffer)))



The Definition of insert-buffer




insert-buffer is yet another buffer-related function.  This
command copies another buffer into the current buffer.  It is the
reverse of append-to-buffer or copy-to-buffer, since they
copy a region of text from the current buffer to another buffer.
Here is a discussion based on the original code.  The code was
simplified in 2003 and is harder to understand.
(See New Body for insert-buffer, to see
a discussion of the new body.)
In addition, this code illustrates the use of interactive with a
buffer that might be read-only and the important distinction
between the name of an object and the object actually referred to.
The Code for insert-buffer



Here is the earlier code:

(defun insert-buffer (buffer)
  "Insert after point the contents of BUFFER.
Puts mark after the inserted text.
BUFFER may be a buffer or a buffer name."
  (interactive "*bInsert buffer: ")
       (or (bufferp buffer)
      (setq buffer (get-buffer buffer)))
  (let (start end newmark)
    (save-excursion
      (save-excursion
        (set-buffer buffer)
        (setq start (point-min) end (point-max)))
      (insert-buffer-substring buffer start end)
      (setq newmark (point)))
    (push-mark newmark)))

As with other function definitions, you can use a template to see an
outline of the function:

(defun insert-buffer (buffer)
  "documentation…"
  (interactive "*bInsert buffer: ")
  body…)


The Interactive Expression in insert-buffer




In insert-buffer, the argument to the interactive
declaration has two parts, an asterisk, ‘*’, and ‘bInsert
buffer: ’.
A Read-only Buffer




The asterisk is for the situation when the current buffer is a
read-only buffer—a buffer that cannot be modified.  If
insert-buffer is called when the current buffer is read-only, a
message to this effect is printed in the echo area and the terminal
may beep or blink at you; you will not be permitted to insert anything
into current buffer.  The asterisk does not need to be followed by a
newline to separate it from the next argument.

‘b’ in an Interactive Expression



The next argument in the interactive expression starts with a lower
case ‘b’.  (This is different from the code for
append-to-buffer, which uses an upper-case ‘B’.
See The Definition of append-to-buffer.)
The lower-case ‘b’ tells the Lisp interpreter that the argument
for insert-buffer should be an existing buffer or else its
name.  (The upper-case ‘B’ option provides for the possibility
that the buffer does not exist.)  Emacs will prompt you for the name
of the buffer, offering you a default buffer, with name completion
enabled.  If the buffer does not exist, you receive a message that
says “No match”; your terminal may beep at you as well.
The new and simplified code generates a list for interactive.
It uses the barf-if-buffer-read-only and read-buffer
functions with which we are already familiar and the progn
special form with which we are not.  (It will be described later.)


The Body of the insert-buffer Function



The body of the insert-buffer function has two major parts: an
or expression and a let expression.  The purpose of the
or expression is to ensure that the argument buffer is
bound to a buffer and not just the name of a buffer.  The body of the
let expression contains the code which copies the other buffer
into the current buffer.
In outline, the two expressions fit into the insert-buffer
function like this:

(defun insert-buffer (buffer)
  "documentation…"
  (interactive "*bInsert buffer: ")
  (or …
      …
       (let (varlist)
      body-of-let… )

To understand how the or expression ensures that the argument
buffer is bound to a buffer and not to the name of a buffer, it
is first necessary to understand the or function.
Before doing this, let me rewrite this part of the function using
if so that you can see what is done in a manner that will be familiar.

insert-buffer With an if Instead of an or



The job to be done is to make sure the value of buffer is a
buffer itself and not the name of a buffer.  If the value is the name,
then the buffer itself must be got.
You can imagine yourself at a conference where an usher is wandering
around holding a list with your name on it and looking for you: the
usher is “bound” to your name, not to you; but when the usher finds
you and takes your arm, the usher becomes “bound” to you.
In Lisp, you might describe this situation like this:

(if (not (holding-on-to-guest))
    (find-and-take-arm-of-guest))

We want to do the same thing with a buffer—if we do not have the
buffer itself, we want to get it.
Using a predicate called bufferp that tells us whether we have a
buffer (rather than its name), we can write the code like this:

(if (not (bufferp buffer))              ; if-part
    (setq buffer (get-buffer buffer)))  ; then-part

Here, the true-or-false-test of the if expression is
(not (bufferp buffer)); and the then-part is the expression
(setq buffer (get-buffer buffer)).
In the test, the function bufferp returns true if its argument is
a buffer—but false if its argument is the name of the buffer.  (The
last character of the function name bufferp is the character
‘p’; as we saw earlier, such use of ‘p’ is a convention that
indicates that the function is a predicate, which is a term that means
that the function will determine whether some property is true or false.
See Using the Wrong Type Object as an Argument.)
The function not precedes the expression (bufferp buffer),
so the true-or-false-test looks like this:

(not (bufferp buffer))

not is a function that returns true if its argument is false
and false if its argument is true.  So if (bufferp buffer)
returns true, the not expression returns false and vice-verse:
what is “not true” is false and what is “not false” is true.
Using this test, the if expression works as follows: when the
value of the variable buffer is actually a buffer rather than
its name, the true-or-false-test returns false and the if
expression does not evaluate the then-part.  This is fine, since we do
not need to do anything to the variable buffer if it really is
a buffer.
On the other hand, when the value of buffer is not a buffer
itself, but the name of a buffer, the true-or-false-test returns true
and the then-part of the expression is evaluated.  In this case, the
then-part is (setq buffer (get-buffer buffer)).  This
expression uses the get-buffer function to return an actual
buffer itself, given its name.  The setq then sets the variable
buffer to the value of the buffer itself, replacing its previous
value (which was the name of the buffer).

The or in the Body



The purpose of the or expression in the insert-buffer
function is to ensure that the argument buffer is bound to a
buffer and not just to the name of a buffer.  The previous section shows
how the job could have been done using an if expression.
However, the insert-buffer function actually uses or.
To understand this, it is necessary to understand how or works.
An or function can have any number of arguments.  It evaluates
each argument in turn and returns the value of the first of its
arguments that is not nil.  Also, and this is a crucial feature
of or, it does not evaluate any subsequent arguments after
returning the first non-nil value.
The or expression looks like this:

(or (bufferp buffer)
    (setq buffer (get-buffer buffer)))

The first argument to or is the expression (bufferp buffer).
This expression returns true (a non-nil value) if the buffer is
actually a buffer, and not just the name of a buffer.  In the or
expression, if this is the case, the or expression returns this
true value and does not evaluate the next expression—and this is fine
with us, since we do not want to do anything to the value of
buffer if it really is a buffer.
On the other hand, if the value of (bufferp buffer) is nil,
which it will be if the value of buffer is the name of a buffer,
the Lisp interpreter evaluates the next element of the or
expression.  This is the expression (setq buffer (get-buffer
buffer)).  This expression returns a non-nil value, which
is the value to which it sets the variable buffer—and this
value is a buffer itself, not the name of a buffer.
The result of all this is that the symbol buffer is always
bound to a buffer itself rather than to the name of a buffer.  All
this is necessary because the set-buffer function in a
following line only works with a buffer itself, not with the name to a
buffer.
Incidentally, using or, the situation with the usher would be
written like this:

(or (holding-on-to-guest) (find-and-take-arm-of-guest))


The let Expression in insert-buffer



After ensuring that the variable buffer refers to a buffer itself
and not just to the name of a buffer, the insert-buffer function
continues with a let expression.  This specifies three local
variables, start, end, and newmark and binds them
to the initial value nil.  These variables are used inside the
remainder of the let and temporarily hide any other occurrence of
variables of the same name in Emacs until the end of the let.
The body of the let contains two save-excursion
expressions.  First, we will look at the inner save-excursion
expression in detail.  The expression looks like this:

(save-excursion
  (set-buffer buffer)
  (setq start (point-min) end (point-max)))

The expression (set-buffer buffer) changes Emacs' attention
from the current buffer to the one from which the text will copied.
In that buffer, the variables start and end are set to
the beginning and end of the buffer, using the commands
point-min and point-max.  Note that we have here an
illustration of how setq is able to set two variables in the
same expression.  The first argument of setq is set to the
value of its second, and its third argument is set to the value of its
fourth.
After the body of the inner save-excursion is evaluated, the
save-excursion restores the original buffer, but start and
end remain set to the values of the beginning and end of the
buffer from which the text will be copied.
The outer save-excursion expression looks like this:

(save-excursion
  (inner-save-excursion-expression
     (go-to-new-buffer-and-set-start-and-end)
  (insert-buffer-substring buffer start end)
  (setq newmark (point)))

The insert-buffer-substring function copies the text
into the current buffer from the region indicated by
start and end in buffer.  Since the whole of the
second buffer lies between start and end, the whole of
the second buffer is copied into the buffer you are editing.  Next,
the value of point, which will be at the end of the inserted text, is
recorded in the variable newmark.
After the body of the outer save-excursion is evaluated, point
and mark are relocated to their original places.
However, it is convenient to locate a mark at the end of the newly
inserted text and locate point at its beginning.  The newmark
variable records the end of the inserted text.  In the last line of
the let expression, the (push-mark newmark) expression
function sets a mark to this location.  (The previous location of the
mark is still accessible; it is recorded on the mark ring and you can
go back to it with C-u C-SPC.)  Meanwhile, point is
located at the beginning of the inserted text, which is where it was
before you called the insert function, the position of which was saved
by the first save-excursion.
The whole let expression looks like this:

(let (start end newmark)
  (save-excursion
    (save-excursion
      (set-buffer buffer)
      (setq start (point-min) end (point-max)))
    (insert-buffer-substring buffer start end)
    (setq newmark (point)))
  (push-mark newmark))

Like the append-to-buffer function, the insert-buffer
function uses let, save-excursion, and
set-buffer.  In addition, the function illustrates one way to
use or.  All these functions are building blocks that we will
find and use again and again.

New Body for insert-buffer




The body in the GNU Emacs 22 version is more confusing than the original.
It consists of two expressions,

  (push-mark
   (save-excursion
     (insert-buffer-substring (get-buffer buffer))
     (point)))

   nil

except, and this is what confuses novices, very important work is done
inside the push-mark expression.
The get-buffer function returns a buffer with the name
provided.  You will note that the function is not called
get-buffer-create; it does not create a buffer if one does not
already exist.  The buffer returned by get-buffer, an existing
buffer, is passed to insert-buffer-substring, which inserts the
whole of the buffer (since you did not specify anything else).
The location into which the buffer is inserted is recorded by
push-mark.  Then the function returns nil, the value of
its last command.  Put another way, the insert-buffer function
exists only to produce a side effect, inserting another buffer, not to
return any value.


Complete Definition of beginning-of-buffer




The basic structure of the beginning-of-buffer function has
already been discussed.  (See A Simplified beginning-of-buffer Definition.)
This section describes the complex part of the definition.
As previously described, when invoked without an argument,
beginning-of-buffer moves the cursor to the beginning of the
buffer (in truth, the beginning of the accessible portion of the
buffer), leaving the mark at the previous position.  However, when the
command is invoked with a number between one and ten, the function
considers that number to be a fraction of the length of the buffer,
measured in tenths, and Emacs moves the cursor that fraction of the
way from the beginning of the buffer.  Thus, you can either call this
function with the key command M-<, which will move the cursor to
the beginning of the buffer, or with a key command such as C-u 7
M-< which will move the cursor to a point 70% of the way through the
buffer.  If a number bigger than ten is used for the argument, it
moves to the end of the buffer.
The beginning-of-buffer function can be called with or without an
argument.  The use of the argument is optional.
Optional Arguments



Unless told otherwise, Lisp expects that a function with an argument in
its function definition will be called with a value for that argument.
If that does not happen, you get an error and a message that says
‘Wrong number of arguments’.
However, optional arguments are a feature of Lisp: a particular
keyword is used to tell the Lisp interpreter that an argument is
optional.  The keyword is &amp;optional.  (The ‘&amp;’ in front of
‘optional’ is part of the keyword.)  In a function definition, if
an argument follows the keyword &amp;optional, no value need be
passed to that argument when the function is called.
The first line of the function definition of beginning-of-buffer
therefore looks like this:

(defun beginning-of-buffer (&amp;optional arg)

In outline, the whole function looks like this:

(defun beginning-of-buffer (&amp;optional arg)
  "documentation…"
  (interactive "P")
  (or (is-the-argument-a-cons-cell arg)
      (and are-both-transient-mark-mode-and-mark-active-true)
      (push-mark))
  (let (determine-size-and-set-it)
  (goto-char
    (if-there-is-an-argument
        figure-out-where-to-go
      else-go-to
      (point-min))))
   do-nicety

The function is similar to the simplified-beginning-of-buffer
function except that the interactive expression has "P"
as an argument and the goto-char function is followed by an
if-then-else expression that figures out where to put the cursor if
there is an argument that is not a cons cell.
(Since I do not explain a cons cell for many more chapters, please
consider ignoring the function consp.  See How Lists are Implemented, and See section ``Cons Cell and List Types'' in The GNU Emacs Lisp Reference Manual.)
The "P" in the interactive expression tells Emacs to
pass a prefix argument, if there is one, to the function in raw form.
A prefix argument is made by typing the META key followed by a
number, or by typing C-u and then a number.  (If you don't type
a number, C-u defaults to a cons cell with a 4.  A lowercase
"p" in the interactive expression causes the function to
convert a prefix arg to a number.)
The true-or-false-test of the if expression looks complex, but
it is not: it checks whether arg has a value that is not
nil and whether it is a cons cell.  (That is what consp
does; it checks whether its argument is a cons cell.)  If arg
has a value that is not nil (and is not a cons cell), which
will be the case if beginning-of-buffer is called with a
numeric argument, then this true-or-false-test will return true and
the then-part of the if expression will be evaluated.  On the
other hand, if beginning-of-buffer is not called with an
argument, the value of arg will be nil and the else-part
of the if expression will be evaluated.  The else-part is
simply point-min, and when this is the outcome, the whole
goto-char expression is (goto-char (point-min)), which
is how we saw the beginning-of-buffer function in its
simplified form.

beginning-of-buffer with an Argument



When beginning-of-buffer is called with an argument, an
expression is evaluated which calculates what value to pass to
goto-char.  This expression is rather complicated at first sight.
It includes an inner if expression and much arithmetic.  It looks
like this:

(if (> (buffer-size) 10000)
    ;; Avoid overflow for large buffer sizes!
                          (* (prefix-numeric-value arg)
                             (/ size 10))
  (/
   (+ 10
      (*
       size (prefix-numeric-value arg))) 10)))

Disentangle beginning-of-buffer



Like other complex-looking expressions, the conditional expression
within beginning-of-buffer can be disentangled by looking at it
as parts of a template, in this case, the template for an if-then-else
expression.  In skeletal form, the expression looks like this:

(if (buffer-is-large
    divide-buffer-size-by-10-and-multiply-by-arg
  else-use-alternate-calculation
     
The true-or-false-test of this inner if expression checks the
size of the buffer.  The reason for this is that the old version 18
Emacs used numbers that are no bigger than eight million or so and in
the computation that followed, the programmer feared that Emacs might
try to use over-large numbers if the buffer were large.  The term
`overflow', mentioned in the comment, means numbers that are over
large.  More recent versions of Emacs use larger numbers, but this
code has not been touched, if only because people now look at buffers
that are far, far larger than ever before.
There are two cases:  if the buffer is large and if it is not.

What happens in a large buffer



In beginning-of-buffer, the inner if expression tests
whether the size of the buffer is greater than 10,000 characters.  To do
this, it uses the > function and the computation of size
that comes from the let expression.
In the old days, the function buffer-size was used.  Not only
was that function called several times, it gave the size of the whole
buffer, not the accessible part.  The computation makes much more
sense when it handles just the accessible part.  (See Narrowing and Widening, for more information on focusing
attention to an `accessible' part.)
The line looks like this:

(if (> size 10000)

When the buffer is large, the then-part of the if expression is
evaluated.  It reads like this (after formatting for easy reading):

(*
  (prefix-numeric-value arg)
  (/ size 10))

This expression is a multiplication, with two arguments to the function
*.
The first argument is (prefix-numeric-value arg).  When
"P" is used as the argument for interactive, the value
passed to the function as its argument is passed a “raw prefix
argument”, and not a number.  (It is a number in a list.)  To perform
the arithmetic, a conversion is necessary, and
prefix-numeric-value does the job.
The second argument is (/ size 10).  This expression divides
the numeric value by ten — the numeric value of the size of the
accessible portion of the buffer.  This produces a number that tells
how many characters make up one tenth of the buffer size.  (In Lisp,
/ is used for division, just as * is used for
multiplication.)
In the multiplication expression as a whole, this amount is multiplied
by the value of the prefix argument—the multiplication looks like this:

(* numeric-value-of-prefix-arg
   number-of-characters-in-one-tenth-of-the-accessible-buffer)

If, for example, the prefix argument is ‘7’, the one-tenth value
will be multiplied by 7 to give a position 70% of the way through.
The result of all this is that if the accessible portion of the buffer
is large, the goto-char expression reads like this:

(goto-char (* (prefix-numeric-value arg)
              (/ size 10)))

This puts the cursor where we want it.

What happens in a small buffer



If the buffer contains fewer than 10,000 characters, a slightly
different computation is performed.  You might think this is not
necessary, since the first computation could do the job.  However, in
a small buffer, the first method may not put the cursor on exactly the
desired line; the second method does a better job.
The code looks like this:

(/ (+ 10 (* size (prefix-numeric-value arg))) 10))

This is code in which you figure out what happens by discovering how the
functions are embedded in parentheses.  It is easier to read if you
reformat it with each expression indented more deeply than its
enclosing expression:

  (/
   (+ 10
      (*
       size
       (prefix-numeric-value arg)))
   10))

Looking at parentheses, we see that the innermost operation is
(prefix-numeric-value arg), which converts the raw argument to
a number.  In the following expression, this number is multiplied by
the size of the accessible portion of the buffer:

(* size (prefix-numeric-value arg))

This multiplication creates a number that may be larger than the size of
the buffer—seven times larger if the argument is 7, for example.  Ten
is then added to this number and finally the large number is divided by
ten to provide a value that is one character larger than the percentage
position in the buffer.
The number that results from all this is passed to goto-char and
the cursor is moved to that point.


The Complete beginning-of-buffer



Here is the complete text of the beginning-of-buffer function:

(defun beginning-of-buffer (&amp;optional arg)
  "Move point to the beginning of the buffer;
leave mark at previous position.
With \\[universal-argument] prefix,
do not set mark at previous position.
With numeric arg N,
put point N/10 of the way from the beginning.

If the buffer is narrowed,
this command uses the beginning and size
of the accessible part of the buffer.

Don't use this command in Lisp programs!
\(goto-char (point-min)) is faster
and avoids clobbering the mark."
  (interactive "P")
  (or (consp arg)
      (and transient-mark-mode mark-active)
      (push-mark))
  (let ((size (- (point-max) (point-min))))
    (goto-char (if (and arg (not (consp arg)))
                   (+ (point-min)
                      (if (> size 10000)
                          ;; Avoid overflow for large buffer sizes!
                          (* (prefix-numeric-value arg)
                             (/ size 10))
                        (/ (+ 10 (* size (prefix-numeric-value arg)))
                           10)))
                 (point-min))))
  (if arg (forward-line 1)))

Except for two small points, the previous discussion shows how this
function works.  The first point deals with a detail in the
documentation string, and the second point concerns the last line of
the function.
In the documentation string, there is reference to an expression:

\\[universal-argument]

A ‘\\’ is used before the first square bracket of this
expression.  This ‘\\’ tells the Lisp interpreter to substitute
whatever key is currently bound to the ‘[…]’.  In the case
of universal-argument, that is usually C-u, but it might
be different.  (See See section ``Tips for Documentation Strings'' in The GNU Emacs Lisp Reference Manual, for more
information.)
Finally, the last line of the beginning-of-buffer command says
to move point to the beginning of the next line if the command is
invoked with an argument:

(if arg (forward-line 1)))

This puts the cursor at the beginning of the first line after the
appropriate tenths position in the buffer.  This is a flourish that
means that the cursor is always located at least the requested
tenths of the way through the buffer, which is a nicety that is,
perhaps, not necessary, but which, if it did not occur, would be sure
to draw complaints.
On the other hand, it also means that if you specify the command with
a C-u, but without a number, that is to say, if the `raw prefix
argument' is simply a cons cell, then the command puts you at the
beginning of the second line …  I don't know whether this is
intended or whether no one has dealt with the code to avoid this
happening.


Review



Here is a brief summary of some of the topics covered in this chapter.
	or
	Evaluate each argument in sequence, and return the value of the first
argument that is not nil; if none return a value that is not
nil, return nil.  In brief, return the first true value
of the arguments; return a true value if one or any of the
others are true.

	and
	Evaluate each argument in sequence, and if any are nil, return
nil; if none are nil, return the value of the last
argument.  In brief, return a true value only if all the arguments are
true; return a true value if one and each of the others is
true.

	&amp;optional
	A keyword used to indicate that an argument to a function definition
is optional; this means that the function can be evaluated without the
argument, if desired.

	prefix-numeric-value
	Convert the `raw prefix argument' produced by (interactive
"P") to a numeric value.

	forward-line
	Move point forward to the beginning of the next line, or if the argument
is greater than one, forward that many lines.  If it can't move as far
forward as it is supposed to, forward-line goes forward as far as
it can and then returns a count of the number of additional lines it was
supposed to move but couldn't.

	erase-buffer
	Delete the entire contents of the current buffer.

	bufferp
	Return t if its argument is a buffer; otherwise return nil.




optional Argument Exercise



Write an interactive function with an optional argument that tests
whether its argument, a number, is greater than or equal to, or else,
less than the value of fill-column, and tells you which, in a
message.  However, if you do not pass an argument to the function, use
56 as a default value.

Chapter 6. Narrowing and Widening




Narrowing is a feature of Emacs that makes it possible for you to focus
on a specific part of a buffer, and work without accidentally changing
other parts.  Narrowing is normally disabled since it can confuse
novices.
The Advantages of Narrowing



With narrowing, the rest of a buffer is made invisible, as if it weren't
there.  This is an advantage if, for example, you want to replace a word
in one part of a buffer but not in another: you narrow to the part you want
and the replacement is carried out only in that section, not in the rest
of the buffer.  Searches will only work within a narrowed region, not
outside of one, so if you are fixing a part of a document, you can keep
yourself from accidentally finding parts you do not need to fix by
narrowing just to the region you want.
(The key binding for narrow-to-region is C-x n n.)
However, narrowing does make the rest of the buffer invisible, which
can scare people who inadvertently invoke narrowing and think they
have deleted a part of their file.  Moreover, the undo command
(which is usually bound to C-x u) does not turn off narrowing
(nor should it), so people can become quite desperate if they do not
know that they can return the rest of a buffer to visibility with the
widen command.
(The key binding for widen is C-x n w.)
Narrowing is just as useful to the Lisp interpreter as to a human.
Often, an Emacs Lisp function is designed to work on just part of a
buffer; or conversely, an Emacs Lisp function needs to work on all of a
buffer that has been narrowed.  The what-line function, for
example, removes the narrowing from a buffer, if it has any narrowing
and when it has finished its job, restores the narrowing to what it was.
On the other hand, the count-lines function, which is called by
what-line, uses narrowing to restrict itself to just that portion
of the buffer in which it is interested and then restores the previous
situation.


The save-restriction Special Form




In Emacs Lisp, you can use the save-restriction special form to
keep track of whatever narrowing is in effect, if any.  When the Lisp
interpreter meets with save-restriction, it executes the code
in the body of the save-restriction expression, and then undoes
any changes to narrowing that the code caused.  If, for example, the
buffer is narrowed and the code that follows save-restriction
gets rid of the narrowing, save-restriction returns the buffer
to its narrowed region afterwards.  In the what-line command,
any narrowing the buffer may have is undone by the widen
command that immediately follows the save-restriction command.
Any original narrowing is restored just before the completion of the
function.
The template for a save-restriction expression is simple:

(save-restriction
  body… )
     
The body of the save-restriction is one or more expressions that
will be evaluated in sequence by the Lisp interpreter.
Finally, a point to note: when you use both save-excursion and
save-restriction, one right after the other, you should use
save-excursion outermost.  If you write them in reverse order,
you may fail to record narrowing in the buffer to which Emacs switches
after calling save-excursion.  Thus, when written together,
save-excursion and save-restriction should be written
like this:

(save-excursion
  (save-restriction
    body…))

In other circumstances, when not written together, the
save-excursion and save-restriction special forms must
be written in the order appropriate to the function.
For example,

  (save-restriction
    (widen)
    (save-excursion
    body…))


what-line




The what-line command tells you the number of the line in which
the cursor is located.  The function illustrates the use of the
save-restriction and save-excursion commands.  Here is the
original text of the function:

(defun what-line ()
  "Print the current line number (in the buffer) of point."
  (interactive)
  (save-restriction
    (widen)
    (save-excursion
      (beginning-of-line)
      (message "Line %d"
               (1+ (count-lines 1 (point)))))))

(In recent versions of GNU Emacs, the what-line function has
been expanded to tell you your line number in a narrowed buffer as
well as your line number in a widened buffer.  The recent version is
more complex than the version shown here.  If you feel adventurous,
you might want to look at it after figuring out how this version
works.  You will probably need to use C-h f
(describe-function).  The newer version uses a conditional to
determine whether the buffer has been narrowed.
(Also, it uses line-number-at-pos, which among other simple
expressions, such as (goto-char (point-min)), moves point to
the beginning of the current line with (forward-line 0) rather
than beginning-of-line.)
The what-line function as shown here has a documentation line
and is interactive, as you would expect.  The next two lines use the
functions save-restriction and widen.
The save-restriction special form notes whatever narrowing is in
effect, if any, in the current buffer and restores that narrowing after
the code in the body of the save-restriction has been evaluated.
The save-restriction special form is followed by widen.
This function undoes any narrowing the current buffer may have had
when what-line was called.  (The narrowing that was there is
the narrowing that save-restriction remembers.)  This widening
makes it possible for the line counting commands to count from the
beginning of the buffer.  Otherwise, they would have been limited to
counting within the accessible region.  Any original narrowing is
restored just before the completion of the function by the
save-restriction special form.
The call to widen is followed by save-excursion, which
saves the location of the cursor (i.e., of point) and of the mark, and
restores them after the code in the body of the save-excursion
uses the beginning-of-line function to move point.
(Note that the (widen) expression comes between the
save-restriction and save-excursion special forms.  When
you write the two save- … expressions in sequence, write
save-excursion outermost.)
The last two lines of the what-line function are functions to
count the number of lines in the buffer and then print the number in the
echo area.

(message "Line %d"
         (1+ (count-lines 1 (point)))))))

The message function prints a one-line message at the bottom of
the Emacs screen.  The first argument is inside of quotation marks and
is printed as a string of characters.  However, it may contain a
‘%d’ expression to print a following argument.  ‘%d’ prints
the argument as a decimal, so the message will say something such as
‘Line 243’.
The number that is printed in place of the ‘%d’ is computed by the
last line of the function:

(1+ (count-lines 1 (point)))

What this does is count the lines from the first position of the
buffer, indicated by the 1, up to (point), and then add
one to that number.  (The 1+ function adds one to its
argument.)  We add one to it because line 2 has only one line before
it, and count-lines counts only the lines before the
current line.
After count-lines has done its job, and the message has been
printed in the echo area, the save-excursion restores point and
mark to their original positions; and save-restriction restores
the original narrowing, if any.

Exercise with Narrowing



Write a function that will display the first 60 characters of the
current buffer, even if you have narrowed the buffer to its latter
half so that the first line is inaccessible.  Restore point, mark, and
narrowing.  For this exercise, you need to use a whole potpourri of
functions, including save-restriction, widen,
goto-char, point-min, message, and
buffer-substring.
(buffer-substring is a previously unmentioned function you will
have to investigate yourself; or perhaps you will have to use
buffer-substring-no-properties or
filter-buffer-substring …, yet other functions.  Text
properties are a feature otherwise not discussed here.  See See section ``Text Properties'' in The GNU Emacs Lisp Reference Manual.)
Additionally, do you really need goto-char or point-min?
Or can you write the function without them?

Chapter 7. car, cdr, cons: Fundamental Functions




In Lisp, car, cdr, and cons are fundamental
functions.  The cons function is used to construct lists, and
the car and cdr functions are used to take them apart.
In the walk through of the copy-region-as-kill function, we
will see cons as well as two variants on cdr,
namely, setcdr and nthcdr.  (See the section called “copy-region-as-kill”.)
Strange Names



The name of the cons function is not unreasonable: it is an
abbreviation of the word `construct'.  The origins of the names for
car and cdr, on the other hand, are esoteric: car
is an acronym from the phrase `Contents of the Address part of the
Register'; and cdr (pronounced `could-er') is an acronym from
the phrase `Contents of the Decrement part of the Register'.  These
phrases refer to specific pieces of hardware on the very early
computer on which the original Lisp was developed.  Besides being
obsolete, the phrases have been completely irrelevant for more than 25
years to anyone thinking about Lisp.  Nonetheless, although a few
brave scholars have begun to use more reasonable names for these
functions, the old terms are still in use.  In particular, since the
terms are used in the Emacs Lisp source code, we will use them in this
introduction.


car and cdr



The car of a list is, quite simply, the first item in the list.
Thus the car of the list (rose violet daisy buttercup) is
rose.
If you are reading this in Info in GNU Emacs, you can see this by
evaluating the following:

(car '(rose violet daisy buttercup))

After evaluating the expression, rose will appear in the echo
area.
Clearly, a more reasonable name for the car function would be
first and this is often suggested.
car does not remove the first item from the list; it only reports
what it is.  After car has been applied to a list, the list is
still the same as it was.  In the jargon, car is
`non-destructive'.  This feature turns out to be important.
The cdr of a list is the rest of the list, that is, the
cdr function returns the part of the list that follows the
first item.  Thus, while the car of the list '(rose violet
daisy buttercup) is rose, the rest of the list, the value
returned by the cdr function, is (violet daisy
buttercup).
You can see this by evaluating the following in the usual way:

(cdr '(rose violet daisy buttercup))

When you evaluate this, (violet daisy buttercup) will appear in
the echo area.
Like car, cdr does not remove any elements from the
list—it just returns a report of what the second and subsequent
elements are.
Incidentally, in the example, the list of flowers is quoted.  If it were
not, the Lisp interpreter would try to evaluate the list by calling
rose as a function.  In this example, we do not want to do that.
Clearly, a more reasonable name for cdr would be rest.
(There is a lesson here: when you name new functions, consider very
carefully what you are doing, since you may be stuck with the names
for far longer than you expect.  The reason this document perpetuates
these names is that the Emacs Lisp source code uses them, and if I did
not use them, you would have a hard time reading the code; but do,
please, try to avoid using these terms yourself.  The people who come
after you will be grateful to you.)
When car and cdr are applied to a list made up of symbols,
such as the list (pine fir oak maple), the element of the list
returned by the function car is the symbol pine without
any parentheses around it.  pine is the first element in the
list.  However, the cdr of the list is a list itself, (fir
oak maple), as you can see by evaluating the following expressions in
the usual way:

(car '(pine fir oak maple))

(cdr '(pine fir oak maple))

On the other hand, in a list of lists, the first element is itself a
list.  car returns this first element as a list.  For example,
the following list contains three sub-lists, a list of carnivores, a
list of herbivores and a list of sea mammals:

(car '((lion tiger cheetah)
       (gazelle antelope zebra)
       (whale dolphin seal)))

In this example, the first element or car of the list is the list of
carnivores, (lion tiger cheetah), and the rest of the list is
((gazelle antelope zebra) (whale dolphin seal)).

(cdr '((lion tiger cheetah)
       (gazelle antelope zebra)
       (whale dolphin seal)))

It is worth saying again that car and cdr are
non-destructive—that is, they do not modify or change lists to which
they are applied.  This is very important for how they are used.
Also, in the first chapter, in the discussion about atoms, I said that
in Lisp, “certain kinds of atom, such as an array, can be separated
into parts; but the mechanism for doing this is different from the
mechanism for splitting a list.  As far as Lisp is concerned, the
atoms of a list are unsplittable.”  (See the section called “Lisp Atoms”.)  The
car and cdr functions are used for splitting lists and
are considered fundamental to Lisp.  Since they cannot split or gain
access to the parts of an array, an array is considered an atom.
Conversely, the other fundamental function, cons, can put
together or construct a list, but not an array.  (Arrays are handled
by array-specific functions.  See See section ``Arrays'' in The GNU Emacs Lisp Reference Manual.)

cons




The cons function constructs lists; it is the inverse of
car and cdr.  For example, cons can be used to make
a four element list from the three element list, (fir oak maple):

(cons 'pine '(fir oak maple))

After evaluating this list, you will see

(pine fir oak maple)

appear in the echo area.  cons causes the creation of a new
list in which the element is followed by the elements of the original
list.
We often say that `cons puts a new element at the beginning of
a list; it attaches or pushes elements onto the list', but this
phrasing can be misleading, since cons does not change an
existing list, but creates a new one.
Like car and cdr, cons is non-destructive.
Build a list



cons must have a list to attach to.[9]  You
cannot start from absolutely nothing.  If you are building a list, you
need to provide at least an empty list at the beginning.  Here is a
series of cons expressions that build up a list of flowers.  If
you are reading this in Info in GNU Emacs, you can evaluate each of
the expressions in the usual way; the value is printed in this text
after ‘⇒’, which you may read as `evaluates to'.

(cons 'buttercup ())
     ⇒ (buttercup)
     
(cons 'daisy '(buttercup))
     ⇒ (daisy buttercup)

(cons 'violet '(daisy buttercup))
     ⇒ (violet daisy buttercup)

(cons 'rose '(violet daisy buttercup))
     ⇒ (rose violet daisy buttercup)

In the first example, the empty list is shown as () and a list
made up of buttercup followed by the empty list is constructed.
As you can see, the empty list is not shown in the list that was
constructed.  All that you see is (buttercup).  The empty list is
not counted as an element of a list because there is nothing in an empty
list.  Generally speaking, an empty list is invisible.
The second example, (cons 'daisy '(buttercup)) constructs a new,
two element list by putting daisy in front of buttercup;
and the third example constructs a three element list by putting
violet in front of daisy and buttercup.

Find the Length of a List: length




You can find out how many elements there are in a list by using the Lisp
function length, as in the following examples:

(length '(buttercup))
     ⇒ 1

(length '(daisy buttercup))
     ⇒ 2

(length (cons 'violet '(daisy buttercup)))
     ⇒ 3

In the third example, the cons function is used to construct a
three element list which is then passed to the length function as
its argument.
We can also use length to count the number of elements in an
empty list:

(length ())
     ⇒ 0

As you would expect, the number of elements in an empty list is zero.
An interesting experiment is to find out what happens if you try to find
the length of no list at all; that is, if you try to call length
without giving it an argument, not even an empty list:

(length )

What you see, if you evaluate this, is the error message

Lisp error: (wrong-number-of-arguments length 0)

This means that the function receives the wrong number of
arguments, zero, when it expects some other number of arguments.  In
this case, one argument is expected, the argument being a list whose
length the function is measuring.  (Note that one list is
one argument, even if the list has many elements inside it.)
The part of the error message that says ‘length’ is the name of
the function.



[9] Actually, you can
cons an element to an atom to produce a dotted pair.  Dotted
pairs are not discussed here; see See section ``Dotted Pair Notation'' in The GNU Emacs Lisp Reference Manual.



nthcdr




The nthcdr function is associated with the cdr function.
What it does is take the cdr of a list repeatedly.
If you take the cdr of the list (pine fir
oak maple), you will be returned the list (fir oak maple).  If you
repeat this on what was returned, you will be returned the list
(oak maple).  (Of course, repeated cdring on the original
list will just give you the original cdr since the function does
not change the list.  You need to evaluate the cdr of the
cdr and so on.)  If you continue this, eventually you will be
returned an empty list, which in this case, instead of being shown as
() is shown as nil.
For review, here is a series of repeated cdrs, the text following
the ‘⇒’ shows what is returned.

(cdr '(pine fir oak maple))
     ⇒(fir oak maple)

(cdr '(fir oak maple))
     ⇒ (oak maple)

(cdr '(oak maple))
     ⇒(maple)

(cdr '(maple))
     ⇒ nil

(cdr 'nil)
     ⇒ nil

(cdr ())
     ⇒ nil

You can also do several cdrs without printing the values in
between, like this:

(cdr (cdr '(pine fir oak maple)))
     ⇒ (oak maple)

In this example, the Lisp interpreter evaluates the innermost list first.
The innermost list is quoted, so it just passes the list as it is to the
innermost cdr.  This cdr passes a list made up of the
second and subsequent elements of the list to the outermost cdr,
which produces a list composed of the third and subsequent elements of
the original list.  In this example, the cdr function is repeated
and returns a list that consists of the original list without its
first two elements.
The nthcdr function does the same as repeating the call to
cdr.  In the following example, the argument 2 is passed to the
function nthcdr, along with the list, and the value returned is
the list without its first two items, which is exactly the same
as repeating cdr twice on the list:

(nthcdr 2 '(pine fir oak maple))
     ⇒ (oak maple)

Using the original four element list, we can see what happens when
various numeric arguments are passed to nthcdr, including 0, 1,
and 5:

;; Leave the list as it was.
(nthcdr 0 '(pine fir oak maple))
     ⇒ (pine fir oak maple)

;; Return a copy without the first element.
(nthcdr 1 '(pine fir oak maple))
     ⇒ (fir oak maple)

;; Return a copy of the list without three elements.
(nthcdr 3 '(pine fir oak maple))
     ⇒ (maple)

;; Return a copy lacking all four elements.
(nthcdr 4 '(pine fir oak maple))
     ⇒ nil

;; Return a copy lacking all elements.
(nthcdr 5 '(pine fir oak maple))
     ⇒ nil


nth




The nthcdr function takes the cdr of a list repeatedly.
The nth function takes the car of the result returned by
nthcdr.  It returns the Nth element of the list.
Thus, if it were not defined in C for speed, the definition of
nth would be:

(defun nth (n list)
  "Returns the Nth element of LIST.
N counts from zero.  If LIST is not that long, nil is returned."
  (car (nthcdr n list)))

(Originally, nth was defined in Emacs Lisp in subr.el,
but its definition was redone in C in the 1980s.)
The nth function returns a single element of a list.
This can be very convenient.
Note that the elements are numbered from zero, not one.  That is to
say, the first element of a list, its car is the zeroth element.
This is called `zero-based' counting and often bothers people who
are accustomed to the first element in a list being number one, which
is `one-based'.
For example:

(nth 0 '("one" "two" "three"))
    ⇒ "one"

(nth 1 '("one" "two" "three"))
    ⇒ "two"

It is worth mentioning that nth, like nthcdr and
cdr, does not change the original list—the function is
non-destructive.  This is in sharp contrast to the setcar and
setcdr functions.

setcar




As you might guess from their names, the setcar and setcdr
functions set the car or the cdr of a list to a new value.
They actually change the original list, unlike car and cdr
which leave the original list as it was.  One way to find out how this
works is to experiment.  We will start with the setcar function.
First, we can make a list and then set the value of a variable to the
list, using the setq function.  Here is a list of animals:

(setq animals '(antelope giraffe lion tiger))

If you are reading this in Info inside of GNU Emacs, you can evaluate
this expression in the usual fashion, by positioning the cursor after
the expression and typing C-x C-e.  (I'm doing this right here
as I write this.  This is one of the advantages of having the
interpreter built into the computing environment.  Incidentally, when
there is nothing on the line after the final parentheses, such as a
comment, point can be on the next line.  Thus, if your cursor is in
the first column of the next line, you do not need to move it.
Indeed, Emacs permits any amount of white space after the final
parenthesis.)
When we evaluate the variable animals, we see that it is bound to
the list (antelope giraffe lion tiger):

animals
     ⇒ (antelope giraffe lion tiger)

Put another way, the variable animals points to the list
(antelope giraffe lion tiger).
Next, evaluate the function setcar while passing it two
arguments, the variable animals and the quoted symbol
hippopotamus; this is done by writing the three element list
(setcar animals 'hippopotamus) and then evaluating it in the
usual fashion:

(setcar animals 'hippopotamus)

After evaluating this expression, evaluate the variable animals
again.  You will see that the list of animals has changed:

animals
     ⇒ (hippopotamus giraffe lion tiger)

The first element on the list, antelope is replaced by
hippopotamus.
So we can see that setcar did not add a new element to the list
as cons would have; it replaced antelope with
hippopotamus; it changed the list.

setcdr




The setcdr function is similar to the setcar function,
except that the function replaces the second and subsequent elements of
a list rather than the first element.
(To see how to change the last element of a list, look ahead to
The kill-new function, which uses
the nthcdr and setcdr functions.)
To see how this works, set the value of the variable to a list of
domesticated animals by evaluating the following expression:

(setq domesticated-animals '(horse cow sheep goat))

If you now evaluate the list, you will be returned the list
(horse cow sheep goat):

domesticated-animals
     ⇒ (horse cow sheep goat)

Next, evaluate setcdr with two arguments, the name of the
variable which has a list as its value, and the list to which the
cdr of the first list will be set;

(setcdr domesticated-animals '(cat dog))

If you evaluate this expression, the list (cat dog) will appear
in the echo area.  This is the value returned by the function.  The
result we are interested in is the “side effect”, which we can see by
evaluating the variable domesticated-animals:

domesticated-animals
     ⇒ (horse cat dog)

Indeed, the list is changed from (horse cow sheep goat) to
(horse cat dog).  The cdr of the list is changed from
(cow sheep goat) to (cat dog).

Exercise



Construct a list of four birds by evaluating several expressions with
cons.  Find out what happens when you cons a list onto
itself.  Replace the first element of the list of four birds with a
fish.  Replace the rest of that list with a list of other fish.

Chapter 8. Cutting and Storing Text




Whenever you cut or clip text out of a buffer with a `kill' command in
GNU Emacs, it is stored in a list and you can bring it back with a
`yank' command.
(The use of the word `kill' in Emacs for processes which specifically
do not destroy the values of the entities is an unfortunate
historical accident.  A much more appropriate word would be `clip' since
that is what the kill commands do; they clip text out of a buffer and
put it into storage from which it can be brought back.  I have often
been tempted to replace globally all occurrences of `kill' in the Emacs
sources with `clip' and all occurrences of `killed' with `clipped'.)
Storing Text in a List



When text is cut out of a buffer, it is stored on a list.  Successive
pieces of text are stored on the list successively, so the list might
look like this:

("a piece of text" "previous piece")

The function cons can be used to create a new list from a piece
of text (an `atom', to use the jargon) and an existing list, like
this:

(cons "another piece"
      '("a piece of text" "previous piece"))

If you evaluate this expression, a list of three elements will appear in
the echo area:

("another piece" "a piece of text" "previous piece")

With the car and nthcdr functions, you can retrieve
whichever piece of text you want.  For example, in the following code,
nthcdr 1 … returns the list with the first item removed;
and the car returns the first element of that remainder—the
second element of the original list:

(car (nthcdr 1 '("another piece"
                 "a piece of text"
                 "previous piece")))
     ⇒ "a piece of text"

The actual functions in Emacs are more complex than this, of course.
The code for cutting and retrieving text has to be written so that
Emacs can figure out which element in the list you want—the first,
second, third, or whatever.  In addition, when you get to the end of
the list, Emacs should give you the first element of the list, rather
than nothing at all.
The list that holds the pieces of text is called the kill ring.
This chapter leads up to a description of the kill ring and how it is
used by first tracing how the zap-to-char function works.  This
function uses (or `calls') a function that invokes a function that
manipulates the kill ring.  Thus, before reaching the mountains, we
climb the foothills.
A subsequent chapter describes how text that is cut from the buffer is
retrieved.  See Yanking Text Back.


zap-to-char




The zap-to-char function changed little between GNU Emacs
version 19 and GNU Emacs version 22.  However, zap-to-char
calls another function, kill-region, which enjoyed a major
rewrite.
The kill-region function in Emacs 19 is complex, but does not
use code that is important at this time.  We will skip it.
The kill-region function in Emacs 22 is easier to read than the
same function in Emacs 19 and introduces a very important concept,
that of error handling.  We will walk through the function.
But first, let us look at the interactive zap-to-char function.
The Complete zap-to-char Implementation



The zap-to-char function removes the text in the region between
the location of the cursor (i.e., of point) up to and including the
next occurrence of a specified character.  The text that
zap-to-char removes is put in the kill ring; and it can be
retrieved from the kill ring by typing C-y (yank).  If
the command is given an argument, it removes text through that number
of occurrences.  Thus, if the cursor were at the beginning of this
sentence and the character were ‘s’, ‘Thus’ would be
removed.  If the argument were two, ‘Thus, if the curs’ would be
removed, up to and including the ‘s’ in ‘cursor’.
If the specified character is not found, zap-to-char will say
“Search failed”, tell you the character you typed, and not remove
any text.
In order to determine how much text to remove, zap-to-char uses
a search function.  Searches are used extensively in code that
manipulates text, and we will focus attention on them as well as on the
deletion command.
Here is the complete text of the version 22 implementation of the function:

(defun zap-to-char (arg char)
  "Kill up to and including ARG'th occurrence of CHAR.
Case is ignored if `case-fold-search' is non-nil in the current buffer.
Goes backward if ARG is negative; error if CHAR not found."
  (interactive "p\ncZap to char: ")
  (if (char-table-p translation-table-for-input)
      (setq char (or (aref translation-table-for-input char) char)))
  (kill-region (point) (progn
                         (search-forward (char-to-string char)
                                         nil nil arg)
                         (point))))
     
The documentation is thorough.  You do need to know the jargon meaning
of the word `kill'.

The interactive Expression



The interactive expression in the zap-to-char command looks like
this:

(interactive "p\ncZap to char: ")

The part within quotation marks, "p\ncZap to char: ", specifies
two different things.  First, and most simply, is the ‘p’.
This part is separated from the next part by a newline, ‘\n’.
The ‘p’ means that the first argument to the function will be
passed the value of a `processed prefix'.  The prefix argument is
passed by typing C-u and a number, or M- and a number.  If
the function is called interactively without a prefix, 1 is passed to
this argument.
The second part of "p\ncZap to char: " is
‘cZap to char:  ’.  In this part, the lower case ‘c’
indicates that interactive expects a prompt and that the
argument will be a character.  The prompt follows the ‘c’ and is
the string ‘Zap to char: ’ (with a space after the colon to
make it look good).
What all this does is prepare the arguments to zap-to-char so they
are of the right type, and give the user a prompt.
In a read-only buffer, the zap-to-char function copies the text
to the kill ring, but does not remove it.  The echo area displays a
message saying that the buffer is read-only.  Also, the terminal may
beep or blink at you.

The Body of zap-to-char



The body of the zap-to-char function contains the code that
kills (that is, removes) the text in the region from the current
position of the cursor up to and including the specified character.
The first part of the code looks like this:

(if (char-table-p translation-table-for-input)
    (setq char (or (aref translation-table-for-input char) char)))
(kill-region (point) (progn
                       (search-forward (char-to-string char) nil nil arg)
                       (point)))

char-table-p is an hitherto unseen function.  It determines
whether its argument is a character table.  When it is, it sets the
character passed to zap-to-char to one of them, if that
character exists, or to the character itself.  (This becomes important
for certain characters in non-European languages.  The aref
function extracts an element from an array.  It is an array-specific
function that is not described in this document.  See See section ``Arrays'' in The GNU Emacs Lisp Reference Manual.)
(point) is the current position of the cursor.
The next part of the code is an expression using progn.  The body
of the progn consists of calls to search-forward and
point.
It is easier to understand how progn works after learning about
search-forward, so we will look at search-forward and
then at progn.

The search-forward Function




The search-forward function is used to locate the
zapped-for-character in zap-to-char.  If the search is
successful, search-forward leaves point immediately after the
last character in the target string.  (In zap-to-char, the
target string is just one character long.  zap-to-char uses the
function char-to-string to ensure that the computer treats that
character as a string.)  If the search is backwards,
search-forward leaves point just before the first character in
the target.  Also, search-forward returns t for true.
(Moving point is therefore a `side effect'.)
In zap-to-char, the search-forward function looks like this:

(search-forward (char-to-string char) nil nil arg)

The search-forward function takes four arguments:
	The first argument is the target, what is searched for.  This must be a
string, such as ‘"z"’.
As it happens, the argument passed to zap-to-char is a single
character.  Because of the way computers are built, the Lisp
interpreter may treat a single character as being different from a
string of characters.  Inside the computer, a single character has a
different electronic format than a string of one character.  (A single
character can often be recorded in the computer using exactly one
byte; but a string may be longer, and the computer needs to be ready
for this.)  Since the search-forward function searches for a
string, the character that the zap-to-char function receives as
its argument must be converted inside the computer from one format to
the other; otherwise the search-forward function will fail.
The char-to-string function is used to make this conversion.

	The second argument bounds the search; it is specified as a position in
the buffer.  In this case, the search can go to the end of the buffer,
so no bound is set and the second argument is nil.

	The third argument tells the function what it should do if the search
fails—it can signal an error (and print a message) or it can return
nil.  A nil as the third argument causes the function to
signal an error when the search fails.

	The fourth argument to search-forward is the repeat count—how
many occurrences of the string to look for.  This argument is optional
and if the function is called without a repeat count, this argument is
passed the value 1.  If this argument is negative, the search goes
backwards.



In template form, a search-forward expression looks like this:

(search-forward "target-string"
                limit-of-search
                what-to-do-if-search-fails
                repeat-count)

We will look at progn next.

The progn Special Form




progn is a special form that causes each of its arguments to be
evaluated in sequence and then returns the value of the last one.  The
preceding expressions are evaluated only for the side effects they
perform.  The values produced by them are discarded.
The template for a progn expression is very simple:

(progn
  body…)

In zap-to-char, the progn expression has to do two things:
put point in exactly the right position; and return the location of
point so that kill-region will know how far to kill to.
The first argument to the progn is search-forward.  When
search-forward finds the string, the function leaves point
immediately after the last character in the target string.  (In this
case the target string is just one character long.)  If the search is
backwards, search-forward leaves point just before the first
character in the target.  The movement of point is a side effect.
The second and last argument to progn is the expression
(point).  This expression returns the value of point, which in
this case will be the location to which it has been moved by
search-forward.  (In the source, a line that tells the function
to go to the previous character, if it is going forward, was commented
out in 1999; I don't remember whether that feature or mis-feature was
ever a part of the distributed source.)  The value of point is
returned by the progn expression and is passed to
kill-region as kill-region's second argument.

Summing up zap-to-char



Now that we have seen how search-forward and progn work,
we can see how the zap-to-char function works as a whole.
The first argument to kill-region is the position of the cursor
when the zap-to-char command is given—the value of point at
that time.  Within the progn, the search function then moves
point to just after the zapped-to-character and point returns the
value of this location.  The kill-region function puts together
these two values of point, the first one as the beginning of the region
and the second one as the end of the region, and removes the region.
The progn special form is necessary because the
kill-region command takes two arguments; and it would fail if
search-forward and point expressions were written in
sequence as two additional arguments.  The progn expression is
a single argument to kill-region and returns the one value that
kill-region needs for its second argument.


kill-region




The zap-to-char function uses the kill-region function.
This function clips text from a region and copies that text to
the kill ring, from which it may be retrieved.
The Emacs 22 version of that function uses condition-case and
copy-region-as-kill, both of which we will explain.
condition-case is an important special form.
In essence, the kill-region function calls
condition-case, which takes three arguments.  In this function,
the first argument does nothing.  The second argument contains the
code that does the work when all goes well.  The third argument
contains the code that is called in the event of an error.
The Complete kill-region Definition



We will go through the condition-case code in a moment.  First,
let us look at the definition of kill-region, with comments
added:

(defun kill-region (beg end)
  "Kill (\"cut\") text between point and mark.
This deletes the text from the buffer and saves it in the kill ring.
The command \\[yank] can retrieve it from there. … "
     
  ;; • Since order matters, pass point first.
  (interactive (list (point) (mark)))
  ;; • And tell us if we cannot cut the text.
  ;; `unless' is an `if' without a then-part.
  (unless (and beg end)
    (error "The mark is not set now, so there is no region"))

  ;; • `condition-case' takes three arguments.
  ;;    If the first argument is nil, as it is here,
  ;;    information about the error signal is not
  ;;    stored for use by another function.
  (condition-case nil

      ;; • The second argument to `condition-case' tells the
      ;;    Lisp interpreter what to do when all goes well.

      ;;    It starts with a `let' function that extracts the string
      ;;    and tests whether it exists.  If so (that is what the
      ;;    `when' checks), it calls an `if' function that determines
      ;;    whether the previous command was another call to
      ;;    `kill-region'; if it was, then the new text is appended to
      ;;    the previous text; if not, then a different function,
      ;;    `kill-new', is called.

      ;;    The `kill-append' function concatenates the new string and
      ;;    the old.  The `kill-new' function inserts text into a new
      ;;    item in the kill ring.

      ;;    `when' is an `if' without an else-part.  The second `when'
      ;;    again checks whether the current string exists; in
      ;;    addition, it checks whether the previous command was
      ;;    another call to `kill-region'.  If one or the other
      ;;    condition is true, then it sets the current command to
      ;;    be `kill-region'.
      (let ((string (filter-buffer-substring beg end t)))
        (when string                    ;STRING is nil if BEG = END
          ;; Add that string to the kill ring, one way or another.
          (if (eq last-command 'kill-region)
              ;;    − `yank-handler' is an optional argument to
              ;;    `kill-region' that tells the `kill-append' and
              ;;    `kill-new' functions how deal with properties
              ;;    added to the text, such as `bold' or `italics'.
              (kill-append string (< end beg) yank-handler)
            (kill-new string nil yank-handler)))
        (when (or string (eq last-command 'kill-region))
          (setq this-command 'kill-region))
        nil)

    ;;  • The third argument to `condition-case' tells the interpreter
    ;;    what to do with an error.
    ;;    The third argument has a conditions part and a body part.
    ;;    If the conditions are met (in this case,
    ;;             if text or buffer are read-only)
    ;;    then the body is executed.
    ;;    The first part of the third argument is the following:
    ((buffer-read-only text-read-only) ;; the if-part
     ;; …  the then-part
     (copy-region-as-kill beg end)
     ;;    Next, also as part of the then-part, set this-command, so
     ;;    it will be set in an error
     (setq this-command 'kill-region)
     ;;    Finally, in the then-part, send a message if you may copy
     ;;    the text to the kill ring without signally an error, but
     ;;    don't if you may not.
     (if kill-read-only-ok
         (progn (message "Read only text copied to kill ring") nil)
       (barf-if-buffer-read-only)
       ;; If the buffer isn't read-only, the text is.
       (signal 'text-read-only (list (current-buffer)))))


condition-case




As we have seen earlier (see Generate an Error Message), when the Emacs Lisp interpreter has trouble evaluating an
expression, it provides you with help; in the jargon, this is called
“signaling an error”.  Usually, the computer stops the program and
shows you a message.
However, some programs undertake complicated actions.  They should not
simply stop on an error.  In the kill-region function, the most
likely error is that you will try to kill text that is read-only and
cannot be removed.  So the kill-region function contains code
to handle this circumstance.  This code, which makes up the body of
the kill-region function, is inside of a condition-case
special form.
The template for condition-case looks like this:

(condition-case
  var
  bodyform
  error-handler…)

The second argument, bodyform, is straightforward.  The
condition-case special form causes the Lisp interpreter to
evaluate the code in bodyform.  If no error occurs, the special
form returns the code's value and produces the side-effects, if any.
In short, the bodyform part of a condition-case
expression determines what should happen when everything works
correctly.
However, if an error occurs, among its other actions, the function
generating the error signal will define one or more error condition
names.
An error handler is the third argument to condition case.
An error handler has two parts, a condition-name and a
body.  If the condition-name part of an error handler
matches a condition name generated by an error, then the body
part of the error handler is run.
As you will expect, the condition-name part of an error handler
may be either a single condition name or a list of condition names.
Also, a complete condition-case expression may contain more
than one error handler.  When an error occurs, the first applicable
handler is run.
Lastly, the first argument to the condition-case expression,
the var argument, is sometimes bound to a variable that
contains information about the error.  However, if that argument is
nil, as is the case in kill-region, that information is
discarded.
In brief, in the kill-region function, the code
condition-case works like this:

If no errors, run only this code
    but, if errors, run this other code.


Lisp macro




The part of the condition-case expression that is evaluated in
the expectation that all goes well has a when.  The code uses
when to determine whether the string variable points to
text that exists.
A when expression is simply a programmers' convenience.  It is
an if without the possibility of an else clause.  In your mind,
you can replace when with if and understand what goes
on.  That is what the Lisp interpreter does.
Technically speaking, when is a Lisp macro.  A Lisp macro
enables you to define new control constructs and other language
features.  It tells the interpreter how to compute another Lisp
expression which will in turn compute the value.  In this case, the
`other expression' is an if expression.
The kill-region function definition also has an unless
macro; it is the converse of when.  The unless macro is
an if without a then clause
For more about Lisp macros, see See section ``Macros'' in The GNU Emacs Lisp Reference Manual.  The C programming language also
provides macros.  These are different, but also useful.
Regarding the when macro, in the condition-case
expression, when the string has content, then another conditional
expression is executed.  This is an if with both a then-part
and an else-part.

(if (eq last-command 'kill-region)
    (kill-append string (< end beg) yank-handler)
  (kill-new string nil yank-handler))

The then-part is evaluated if the previous command was another call to
kill-region; if not, the else-part is evaluated.
yank-handler is an optional argument to kill-region that
tells the kill-append and kill-new functions how deal
with properties added to the text, such as `bold' or `italics'.
last-command is a variable that comes with Emacs that we have
not seen before.  Normally, whenever a function is executed, Emacs
sets the value of last-command to the previous command.
In this segment of the definition, the if expression checks
whether the previous command was kill-region.  If it was,

(kill-append string (< end beg) yank-handler)

concatenates a copy of the newly clipped text to the just previously
clipped text in the kill ring.


copy-region-as-kill




The copy-region-as-kill function copies a region of text from a
buffer and (via either kill-append or kill-new) saves it
in the kill-ring.
If you call copy-region-as-kill immediately after a
kill-region command, Emacs appends the newly copied text to the
previously copied text.  This means that if you yank back the text, you
get it all, from both this and the previous operation.  On the other
hand, if some other command precedes the copy-region-as-kill,
the function copies the text into a separate entry in the kill ring.
The complete copy-region-as-kill function definition



Here is the complete text of the version 22 copy-region-as-kill
function:

(defun copy-region-as-kill (beg end)
  "Save the region as if killed, but don't kill it.
In Transient Mark mode, deactivate the mark.
If `interprogram-cut-function' is non-nil, also save the text for a window
system cut and paste."
  (interactive "r")
       (if (eq last-command 'kill-region)
      (kill-append (filter-buffer-substring beg end) (< end beg))
    (kill-new (filter-buffer-substring beg end)))
  (if transient-mark-mode
      (setq deactivate-mark t))
  nil)

As usual, this function can be divided into its component parts:

(defun copy-region-as-kill (argument-list)
  "documentation…"
  (interactive "r")
  body…)

The arguments are beg and end and the function is
interactive with "r", so the two arguments must refer to the
beginning and end of the region.  If you have been reading though this
document from the beginning, understanding these parts of a function is
almost becoming routine.
The documentation is somewhat confusing unless you remember that the
word `kill' has a meaning different from usual.  The `Transient Mark'
and interprogram-cut-function comments explain certain
side-effects.
After you once set a mark, a buffer always contains a region.  If you
wish, you can use Transient Mark mode to highlight the region
temporarily.  (No one wants to highlight the region all the time, so
Transient Mark mode highlights it only at appropriate times.  Many
people turn off Transient Mark mode, so the region is never
highlighted.)
Also, a windowing system allows you to copy, cut, and paste among
different programs.  In the X windowing system, for example, the
interprogram-cut-function function is x-select-text,
which works with the windowing system's equivalent of the Emacs kill
ring.
The body of the copy-region-as-kill function starts with an
if clause.  What this clause does is distinguish between two
different situations: whether or not this command is executed
immediately after a previous kill-region command.  In the first
case, the new region is appended to the previously copied text.
Otherwise, it is inserted into the beginning of the kill ring as a
separate piece of text from the previous piece.
The last two lines of the function prevent the region from lighting up
if Transient Mark mode is turned on.
The body of copy-region-as-kill merits discussion in detail.

The Body of copy-region-as-kill



The copy-region-as-kill function works in much the same way as
the kill-region function.  Both are written so that two or more
kills in a row combine their text into a single entry.  If you yank
back the text from the kill ring, you get it all in one piece.
Moreover, kills that kill forward from the current position of the
cursor are added to the end of the previously copied text and commands
that copy text backwards add it to the beginning of the previously
copied text.  This way, the words in the text stay in the proper
order.
Like kill-region, the copy-region-as-kill function makes
use of the last-command variable that keeps track of the
previous Emacs command.
last-command and this-command



Normally, whenever a function is executed, Emacs sets the value of
this-command to the function being executed (which in this case
would be copy-region-as-kill).  At the same time, Emacs sets
the value of last-command to the previous value of
this-command.
In the first part of the body of the copy-region-as-kill
function, an if expression determines whether the value of
last-command is kill-region.  If so, the then-part of
the if expression is evaluated; it uses the kill-append
function to concatenate the text copied at this call to the function
with the text already in the first element (the car) of the kill
ring.  On the other hand, if the value of last-command is not
kill-region, then the copy-region-as-kill function
attaches a new element to the kill ring using the kill-new
function.
The if expression reads as follows; it uses eq:

  (if (eq last-command 'kill-region)
      ;; then-part
      (kill-append  (filter-buffer-substring beg end) (< end beg))
    ;; else-part
    (kill-new  (filter-buffer-substring beg end)))
     
(The filter-buffer-substring function returns a filtered
substring of the buffer, if any.  Optionally—the arguments are not
here, so neither is done—the function may delete the initial text or
return the text without its properties; this function is a replacement
for the older buffer-substring function, which came before text
properties were implemented.)
The eq function tests whether its first argument is the same Lisp
object as its second argument.  The eq function is similar to the
equal function in that it is used to test for equality, but
differs in that it determines whether two representations are actually
the same object inside the computer, but with different names.
equal determines whether the structure and contents of two
expressions are the same.
If the previous command was kill-region, then the Emacs Lisp
interpreter calls the kill-append function

The kill-append function




The kill-append function looks like this:

(defun kill-append (string before-p &amp;optional yank-handler)
  "Append STRING to the end of the latest kill in the kill ring.
If BEFORE-P is non-nil, prepend STRING to the kill.
… "
  (let* ((cur (car kill-ring)))
    (kill-new (if before-p (concat string cur) (concat cur string))
              (or (= (length cur) 0)
                  (equal yank-handler
                         (get-text-property 0 'yank-handler cur)))
              yank-handler)))
     
The kill-append function is fairly straightforward.  It uses
the kill-new function, which we will discuss in more detail in
a moment.
(Also, the function provides an optional argument called
yank-handler; when invoked, this argument tells the function
how to deal with properties added to the text, such as `bold' or
`italics'.)
It has a let* function to set the value of the first element of
the kill ring to cur.  (I do not know why the function does not
use let instead; only one value is set in the expression.
Perhaps this is a bug that produces no problems?)
Consider the conditional that is one of the two arguments to
kill-new.  It uses concat to concatenate the new text to
the car of the kill ring.  Whether it prepends or appends the
text depends on the results of an if expression:

(if before-p                            ; if-part
    (concat string cur)                 ; then-part
  (concat cur string))                  ; else-part

If the region being killed is before the region that was killed in the
last command, then it should be prepended before the material that was
saved in the previous kill; and conversely, if the killed text follows
what was just killed, it should be appended after the previous text.
The if expression depends on the predicate before-p to
decide whether the newly saved text should be put before or after the
previously saved text.
The symbol before-p is the name of one of the arguments to
kill-append.  When the kill-append function is
evaluated, it is bound to the value returned by evaluating the actual
argument.  In this case, this is the expression (< end beg).
This expression does not directly determine whether the killed text in
this command is located before or after the kill text of the last
command; what it does is determine whether the value of the variable
end is less than the value of the variable beg.  If it
is, it means that the user is most likely heading towards the
beginning of the buffer.  Also, the result of evaluating the predicate
expression, (< end beg), will be true and the text will be
prepended before the previous text.  On the other hand, if the value of
the variable end is greater than the value of the variable
beg, the text will be appended after the previous text.
When the newly saved text will be prepended, then the string with the new
text will be concatenated before the old text:

(concat string cur)

But if the text will be appended, it will be concatenated
after the old text:

(concat cur string))

To understand how this works, we first need to review the
concat function.  The concat function links together or
unites two strings of text.  The result is a string.  For example:

(concat "abc" "def")
     ⇒ "abcdef"

(concat "new "
        (car '("first element" "second element")))
     ⇒ "new first element"

(concat (car
        '("first element" "second element")) " modified")
     ⇒ "first element modified"

We can now make sense of kill-append: it modifies the contents
of the kill ring.  The kill ring is a list, each element of which is
saved text.  The kill-append function uses the kill-new
function which in turn uses the setcar function.

The kill-new function




The kill-new function looks like this:

(defun kill-new (string &amp;optional replace yank-handler)
  "Make STRING the latest kill in the kill ring.
Set `kill-ring-yank-pointer' to point to it.

If `interprogram-cut-function' is non-nil, apply it to STRING.
Optional second argument REPLACE non-nil means that STRING will replace
the front of the kill ring, rather than being added to the list.
…"
       (if (> (length string) 0)
      (if yank-handler
          (put-text-property 0 (length string)
                             'yank-handler yank-handler string))
    (if yank-handler
        (signal 'args-out-of-range
                (list string "yank-handler specified for empty string"))))
  (if (fboundp 'menu-bar-update-yank-menu)
      (menu-bar-update-yank-menu string (and replace (car kill-ring))))
  (if (and replace kill-ring)
      (setcar kill-ring string)
    (push string kill-ring)
    (if (> (length kill-ring) kill-ring-max)
        (setcdr (nthcdr (1- kill-ring-max) kill-ring) nil)))
  (setq kill-ring-yank-pointer kill-ring)
  (if interprogram-cut-function
      (funcall interprogram-cut-function string (not replace))))

(Notice that the function is not interactive.)
As usual, we can look at this function in parts.
The function definition has an optional yank-handler argument,
which when invoked tells the function how to deal with properties
added to the text, such as `bold' or `italics'.  We will skip that.
The first line of the documentation makes sense:

Make STRING the latest kill in the kill ring.

Let's skip over the rest of the documentation for the moment.
Also, let's skip over the initial if expression and those lines
of code involving menu-bar-update-yank-menu.  We will explain
them below.
The critical lines are these:

  (if (and replace kill-ring)
      ;; then
      (setcar kill-ring string)
    ;; else
  (push string kill-ring)
    (setq kill-ring (cons string kill-ring))
    (if (> (length kill-ring) kill-ring-max)
        ;; avoid overly long kill ring
        (setcdr (nthcdr (1- kill-ring-max) kill-ring) nil)))
  (setq kill-ring-yank-pointer kill-ring)
  (if interprogram-cut-function
      (funcall interprogram-cut-function string (not replace))))

The conditional test is (and replace kill-ring).
This will be true when two conditions are met:  the kill ring has
something in it, and the replace variable is true.
When the kill-append function sets replace to be true
and when the kill ring has at least one item in it, the setcar
expression is executed:

(setcar kill-ring string)

The setcar function actually changes the first element of the
kill-ring list to the value of string.  It replaces the
first element.
On the other hand, if the kill ring is empty, or replace is false, the
else-part of the condition is executed:

(push string kill-ring)

push puts its first argument onto the second.  It is similar to
the older

(setq kill-ring (cons string kill-ring))

or the newer

(add-to-list kill-ring string)

When it is false, the expression first constructs a new version of the
kill ring by prepending string to the existing kill ring as a
new element (that is what the push does).  Then it executes a
second if clause.  This second if clause keeps the kill
ring from growing too long.
Let's look at these two expressions in order.
The push line of the else-part sets the new value of the kill
ring to what results from adding the string being killed to the old
kill ring.
We can see how this works with an example.
First,

(setq example-list '("here is a clause" "another clause"))

After evaluating this expression with C-x C-e, you can evaluate
example-list and see what it returns:

example-list
     ⇒ ("here is a clause" "another clause")

Now, we can add a new element on to this list by evaluating the
following expression:


(push "a third clause" example-list)

When we evaluate example-list, we find its value is:

example-list
     ⇒ ("a third clause" "here is a clause" "another clause")

Thus, the third clause is added to the list by push.
Now for the second part of the if clause.  This expression
keeps the kill ring from growing too long.  It looks like this:

(if (> (length kill-ring) kill-ring-max)
    (setcdr (nthcdr (1- kill-ring-max) kill-ring) nil))

The code checks whether the length of the kill ring is greater than
the maximum permitted length.  This is the value of
kill-ring-max (which is 60, by default).  If the length of the
kill ring is too long, then this code sets the last element of the
kill ring to nil.  It does this by using two functions,
nthcdr and setcdr.
We looked at setcdr earlier (see setcdr).
It sets the cdr of a list, just as setcar sets the
car of a list.  In this case, however, setcdr will not be
setting the cdr of the whole kill ring; the nthcdr
function is used to cause it to set the cdr of the next to last
element of the kill ring—this means that since the cdr of the
next to last element is the last element of the kill ring, it will set
the last element of the kill ring.
The nthcdr function works by repeatedly taking the cdr of a
list—it takes the cdr of the cdr of the cdr
…  It does this N times and returns the results.
(See nthcdr.)
Thus, if we had a four element list that was supposed to be three
elements long, we could set the cdr of the next to last element
to nil, and thereby shorten the list.  (If you set the last
element to some other value than nil, which you could do, then
you would not have shortened the list.  See setcdr.)
You can see shortening by evaluating the following three expressions
in turn.  First set the value of trees to (maple oak pine
birch), then set the cdr of its second cdr to nil
and then find the value of trees:

(setq trees '(maple oak pine birch))
     ⇒ (maple oak pine birch)

(setcdr (nthcdr 2 trees) nil)
     ⇒ nil

trees
     ⇒ (maple oak pine)

(The value returned by the setcdr expression is nil since
that is what the cdr is set to.)
To repeat, in kill-new, the nthcdr function takes the
cdr a number of times that is one less than the maximum permitted
size of the kill ring and setcdr sets the cdr of that
element (which will be the rest of the elements in the kill ring) to
nil.  This prevents the kill ring from growing too long.
The next to last expression in the kill-new function is

(setq kill-ring-yank-pointer kill-ring)

The kill-ring-yank-pointer is a global variable that is set to be
the kill-ring.
Even though the kill-ring-yank-pointer is called a
‘pointer’, it is a variable just like the kill ring.  However, the
name has been chosen to help humans understand how the variable is used.
Now, to return to an early expression in the body of the function:

  (if (fboundp 'menu-bar-update-yank-menu)
       (menu-bar-update-yank-menu string (and replace (car kill-ring))))

It starts with an if expression
In this case, the expression tests first to see whether
menu-bar-update-yank-menu exists as a function, and if so,
calls it.  The fboundp function returns true if the symbol it
is testing has a function definition that `is not void'.  If the
symbol's function definition were void, we would receive an error
message, as we did when we created errors intentionally (see Generate an Error Message).
The then-part contains an expression whose first element is the
function and.
The and special form evaluates each of its arguments until one
of the arguments returns a value of nil, in which case the
and expression returns nil; however, if none of the
arguments returns a value of nil, the value resulting from
evaluating the last argument is returned.  (Since such a value is not
nil, it is considered true in Emacs Lisp.)  In other words, an
and expression returns a true value only if all its arguments
are true.  (See the section called “Review”.)
The expression determines whether the second argument to
menu-bar-update-yank-menu is true or not.
menu-bar-update-yank-menu is one of the functions that make it
possible to use the `Select and Paste' menu in the Edit item of a menu
bar; using a mouse, you can look at the various pieces of text you
have saved and select one piece to paste.
The last expression in the kill-new function adds the newly
copied string to whatever facility exists for copying and pasting
among different programs running in a windowing system.  In the X
Windowing system, for example, the x-select-text function takes
the string and stores it in memory operated by X.  You can paste the
string in another program, such as an Xterm.
The expression looks like this:

  (if interprogram-cut-function
      (funcall interprogram-cut-function string (not replace))))

If an interprogram-cut-function exists, then Emacs executes
funcall, which in turn calls its first argument as a function
and passes the remaining arguments to it.  (Incidentally, as far as I
can see, this if expression could be replaced by an and
expression similar to the one in the first part of the function.)
We are not going to discuss windowing systems and other programs
further, but merely note that this is a mechanism that enables GNU
Emacs to work easily and well with other programs.
This code for placing text in the kill ring, either concatenated with
an existing element or as a new element, leads us to the code for
bringing back text that has been cut out of the buffer—the yank
commands.  However, before discussing the yank commands, it is better
to learn how lists are implemented in a computer.  This will make
clear such mysteries as the use of the term `pointer'.  But before
that, we will digress into C.



Digression into C




The copy-region-as-kill function (see copy-region-as-kill) uses the filter-buffer-substring
function, which in turn uses the delete-and-extract-region
function.  It removes the contents of a region and you cannot get them
back.
Unlike the other code discussed here, the
delete-and-extract-region function is not written in Emacs
Lisp; it is written in C and is one of the primitives of the GNU Emacs
system.  Since it is very simple, I will digress briefly from Lisp and
describe it here.
Like many of the other Emacs primitives,
delete-and-extract-region is written as an instance of a C
macro, a macro being a template for code.  The complete macro looks
like this:

DEFUN ("buffer-substring-no-properties", Fbuffer_substring_no_properties,
       Sbuffer_substring_no_properties, 2, 2, 0,
       doc: /* Return the characters of part of the buffer,
without the text properties.
The two arguments START and END are character positions;
they can be in either order.  */)
     (start, end)
     Lisp_Object start, end;
{
  register int b, e;

  validate_region (&amp;start, &amp;end);
  b = XINT (start);
  e = XINT (end);

  return make_buffer_string (b, e, 0);
}

Without going into the details of the macro writing process, let me
point out that this macro starts with the word DEFUN.  The word
DEFUN was chosen since the code serves the same purpose as
defun does in Lisp.  (The DEFUN C macro is defined in
emacs/src/lisp.h.)
The word DEFUN is followed by seven parts inside of
parentheses:
	The first part is the name given to the function in Lisp,
delete-and-extract-region.

	The second part is the name of the function in C,
Fdelete_and_extract_region.  By convention, it starts with
‘F’.  Since C does not use hyphens in names, underscores are used
instead.

	The third part is the name for the C constant structure that records
information on this function for internal use.  It is the name of the
function in C but begins with an ‘S’ instead of an ‘F’.

	The fourth and fifth parts specify the minimum and maximum number of
arguments the function can have.  This function demands exactly 2
arguments.

	The sixth part is nearly like the argument that follows the
interactive declaration in a function written in Lisp: a letter
followed, perhaps, by a prompt.  The only difference from the Lisp is
when the macro is called with no arguments.  Then you write a 0
(which is a `null string'), as in this macro.
If you were to specify arguments, you would place them between
quotation marks.  The C macro for goto-char includes
"NGoto char: " in this position to indicate that the function
expects a raw prefix, in this case, a numerical location in a buffer,
and provides a prompt.

	The seventh part is a documentation string, just like the one for a
function written in Emacs Lisp, except that every newline must be
written explicitly as ‘\n’ followed by a backslash and carriage
return.
Thus, the first two lines of documentation for  goto-char are
written like this:

  "Set point to POSITION, a number or marker.\n\
Beginning of buffer is position (point-min), end is (point-max)."




In a C macro, the formal parameters come next, with a statement of
what kind of object they are, followed by what might be called the `body'
of the macro.  For delete-and-extract-region the `body'
consists of the following four lines:

validate_region (&amp;start, &amp;end);
if (XINT (start) == XINT (end))
  return build_string ("");
return del_range_1 (XINT (start), XINT (end), 1, 1);

The   validate_region function checks whether the values
passed as the beginning and end of the region are the proper type and
are within range.  If the beginning and end positions are the same,
then return and empty string.
The del_range_1 function actually deletes the text.  It is a
complex function we will not look into.  It updates the buffer and
does other things.  However, it is worth looking at the two arguments
passed to del_range.  These are XINT (start) and
XINT (end).
As far as the C language is concerned, start and end are
two integers that mark the beginning and end of the region to be
deleted[10].
In early versions of Emacs, these two numbers were thirty-two bits
long, but the code is slowly being generalized to handle other
lengths.  Three of the available bits are used to specify the type of
information; the remaining bits are used as `content'.
‘XINT’ is a C macro that extracts the relevant number from the
longer collection of bits; the three other bits are discarded.
The command in delete-and-extract-region looks like this:

del_range_1 (XINT (start), XINT (end), 1, 1);

It deletes the region between the beginning position, start,
and the ending position, end.
From the point of view of the person writing Lisp, Emacs is all very
simple; but hidden underneath is a great deal of complexity to make it
all work.


[10] More precisely, and requiring more expert knowledge
to understand, the two integers are of type `Lisp_Object', which can
also be a C union instead of an integer type.



Initializing a Variable with defvar




The copy-region-as-kill function is written in Emacs Lisp.  Two
functions within it, kill-append and kill-new, copy a
region in a buffer and save it in a variable called the
kill-ring.  This section describes how the kill-ring
variable is created and initialized using the defvar special
form.
(Again we note that the term kill-ring is a misnomer.  The text
that is clipped out of the buffer can be brought back; it is not a ring
of corpses, but a ring of resurrectable text.)
In Emacs Lisp, a variable such as the kill-ring is created and
given an initial value by using the defvar special form.  The
name comes from “define variable”.
The defvar special form is similar to setq in that it sets
the value of a variable.  It is unlike setq in two ways: first,
it only sets the value of the variable if the variable does not already
have a value.  If the variable already has a value, defvar does
not override the existing value.  Second, defvar has a
documentation string.
(Another special form, defcustom, is designed for variables
that people customize.  It has more features than defvar.
(See Setting Variables with defcustom.)
Seeing the Current Value of a Variable



You can see the current value of a variable, any variable, by using
the describe-variable function, which is usually invoked by
typing C-h v.  If you type C-h v and then kill-ring
(followed by RET) when prompted, you will see what is in your
current kill ring—this may be quite a lot!  Conversely, if you have
been doing nothing this Emacs session except read this document, you
may have nothing in it.  Also, you will see the documentation for
kill-ring:

Documentation:
List of killed text sequences.
Since the kill ring is supposed to interact nicely with cut-and-paste
facilities offered by window systems, use of this variable should
     interact nicely with `interprogram-cut-function' and
`interprogram-paste-function'.  The functions `kill-new',
`kill-append', and `current-kill' are supposed to implement this
interaction; you may want to use them instead of manipulating the kill
ring directly.

The kill ring is defined by a defvar in the following way:

(defvar kill-ring nil
  "List of killed text sequences.
…")

In this variable definition, the variable is given an initial value of
nil, which makes sense, since if you have saved nothing, you want
nothing back if you give a yank command.  The documentation
string is written just like the documentation string of a defun.
As with the documentation string of the defun, the first line of
the documentation should be a complete sentence, since some commands,
like apropos, print only the first line of documentation.
Succeeding lines should not be indented; otherwise they look odd when
you use C-h v (describe-variable).

defvar and an asterisk




In the past, Emacs used the defvar special form both for
internal variables that you would not expect a user to change and for
variables that you do expect a user to change.  Although you can still
use defvar for user customizable variables, please use
defcustom instead, since that special form provides a path into
the Customization commands.  (See Specifying Variables using defcustom.)
When you specified a variable using the defvar special form,
you could distinguish a variable that a user might want to change from
others by typing an asterisk, ‘*’, in the first column of its
documentation string.  For example:

(defvar shell-command-default-error-buffer nil
  "*Buffer name for `shell-command' … error output.
… ")

You could (and still can) use the set-variable command to
change the value of shell-command-default-error-buffer
temporarily.  However, options set using set-variable are set
only for the duration of your editing session.  The new values are not
saved between sessions.  Each time Emacs starts, it reads the original
value, unless you change the value within your .emacs file,
either by setting it manually or by using customize.
See Your .emacs File.
For me, the major use of the set-variable command is to suggest
variables that I might want to set in my .emacs file.  There
are now more than 700 such variables — far too many to remember
readily.  Fortunately, you can press TAB after calling the
M-x set-variable command to see the list of variables.
(See See section ``Examining and Setting Variables'' in The GNU Emacs Manual.)


Review



Here is a brief summary of some recently introduced functions.
	car, cdr
	car returns the first element of a list; cdr returns the
second and subsequent elements of a list.
For example:

(car '(1 2 3 4 5 6 7))
     ⇒ 1
(cdr '(1 2 3 4 5 6 7))
     ⇒ (2 3 4 5 6 7)


	cons
	cons constructs a list by prepending its first argument to its
second argument.
For example:

(cons 1 '(2 3 4))
     ⇒ (1 2 3 4)


	funcall
	funcall evaluates its first argument as a function.  It passes
its remaining arguments to its first argument.

	nthcdr
	Return the result of taking cdr `n' times on a list.
The `rest of the rest', as it were.
For example:

(nthcdr 3 '(1 2 3 4 5 6 7))
     ⇒ (4 5 6 7)


	setcar, setcdr
	setcar changes the first element of a list; setcdr
changes the second and subsequent elements of a list.
For example:

(setq triple '(1 2 3))

(setcar triple '37)

triple
     ⇒ (37 2 3)

(setcdr triple '("foo" "bar"))

triple
     ⇒ (37 "foo" "bar")


	progn
	Evaluate each argument in sequence and then return the value of the
last.
For example:

(progn 1 2 3 4)
     ⇒ 4


	save-restriction
	Record whatever narrowing is in effect in the current buffer, if any,
and restore that narrowing after evaluating the arguments.

	search-forward
	Search for a string, and if the string is found, move point.  With a
regular expression, use the similar re-search-forward.
(See Regular Expression Searches, for an
explanation of regular expression patterns and searches.)
search-forward and re-search-forward take four
arguments:
	The string or regular expression to search for.

	Optionally, the limit of the search.

	Optionally, what to do if the search fails, return nil or an
error message.

	Optionally, how many times to repeat the search; if negative, the
search goes backwards.




	kill-region, delete-and-extract-region, copy-region-as-kill
	kill-region cuts the text between point and mark from the
buffer and stores that text in the kill ring, so you can get it back
by yanking.
copy-region-as-kill copies the text between point and mark into
the kill ring, from which you can get it by yanking.  The function
does not cut or remove the text from the buffer.



delete-and-extract-region removes the text between point and
mark from the buffer and throws it away.  You cannot get it back.
(This is not an interactive command.)

Searching Exercises



	Write an interactive function that searches for a string.  If the
search finds the string, leave point after it and display a message
that says “Found!”.  (Do not use search-forward for the name
of this function; if you do, you will overwrite the existing version of
search-forward that comes with Emacs.  Use a name such as
test-search instead.)

	Write a function that prints the third element of the kill ring in the
echo area, if any; if the kill ring does not contain a third element,
print an appropriate message.




Chapter 9. How Lists are Implemented




In Lisp, atoms are recorded in a straightforward fashion; if the
implementation is not straightforward in practice, it is, nonetheless,
straightforward in theory.  The atom ‘rose’, for example, is
recorded as the four contiguous letters ‘r’, ‘o’, ‘s’,
‘e’.  A list, on the other hand, is kept differently.  The mechanism
is equally simple, but it takes a moment to get used to the idea.  A
list is kept using a series of pairs of pointers.  In the series, the
first pointer in each pair points to an atom or to another list, and the
second pointer in each pair points to the next pair, or to the symbol
nil, which marks the end of the list.
A pointer itself is quite simply the electronic address of what is
pointed to.  Hence, a list is kept as a series of electronic addresses.
Lists diagrammed



For example, the list (rose violet buttercup) has three elements,
‘rose’, ‘violet’, and ‘buttercup’.  In the computer, the
electronic address of ‘rose’ is recorded in a segment of computer
memory along with the address that gives the electronic address of where
the atom ‘violet’ is located; and that address (the one that tells
where ‘violet’ is located) is kept along with an address that tells
where the address for the atom ‘buttercup’ is located.
This sounds more complicated than it is and is easier seen in a diagram:

    ___ ___      ___ ___      ___ ___
   |___|___|--> |___|___|--> |___|___|--> nil
     |            |            |
     |            |            |
      --> rose     --> violet   --> buttercup
     
In the diagram, each box represents a word of computer memory that
holds a Lisp object, usually in the form of a memory address.  The boxes,
i.e. the addresses, are in pairs.  Each arrow points to what the address
is the address of, either an atom or another pair of addresses.  The
first box is the electronic address of ‘rose’ and the arrow points
to ‘rose’; the second box is the address of the next pair of boxes,
the first part of which is the address of ‘violet’ and the second
part of which is the address of the next pair.  The very last box
points to the symbol nil, which marks the end of the list.
When a variable is set to a list with a function such as setq,
it stores the address of the first box in the variable.  Thus,
evaluation of the expression

(setq bouquet '(rose violet buttercup))

creates a situation like this:

bouquet
     |
     |     ___ ___      ___ ___      ___ ___
      --> |___|___|--> |___|___|--> |___|___|--> nil
            |            |            |
            |            |            |
             --> rose     --> violet   --> buttercup

In this example, the symbol bouquet holds the address of the first
pair of boxes.
This same list can be illustrated in a different sort of box notation
like this:

bouquet
 |
 |    --------------       ---------------       ----------------
 |   | car   | cdr  |     | car    | cdr  |     | car     | cdr  |
  -->| rose  |   o------->| violet |   o------->| butter- |  nil |
     |       |      |     |        |      |     | cup     |      |
      --------------       ---------------       ----------------

(Symbols consist of more than pairs of addresses, but the structure of
a symbol is made up of addresses.  Indeed, the symbol bouquet
consists of a group of address-boxes, one of which is the address of
the printed word ‘bouquet’, a second of which is the address of a
function definition attached to the symbol, if any, a third of which
is the address of the first pair of address-boxes for the list
(rose violet buttercup), and so on.  Here we are showing that
the symbol's third address-box points to the first pair of
address-boxes for the list.)
If a symbol is set to the cdr of a list, the list itself is not
changed; the symbol simply has an address further down the list.  (In
the jargon, car and cdr are `non-destructive'.)  Thus,
evaluation of the following expression

(setq flowers (cdr bouquet))

produces this:

bouquet        flowers
  |              |
  |     ___ ___  |     ___ ___      ___ ___
   --> |   |   |  --> |   |   |    |   |   |
       |___|___|----> |___|___|--> |___|___|--> nil
         |              |            |
         |              |            |
          --> rose       --> violet   --> buttercup

The value of flowers is (violet buttercup), which is
to say, the symbol flowers holds the address of the pair of
address-boxes, the first of which holds the address of violet,
and the second of which holds the address of buttercup.
A pair of address-boxes is called a cons cell or dotted
pair.  See See section ``Cons Cell and List Types'' in The GNU Emacs Lisp Reference Manual, and See section ``Dotted Pair Notation'' in The GNU Emacs Lisp Reference Manual, for more
information about cons cells and dotted pairs.
The function cons adds a new pair of addresses to the front of
a series of addresses like that shown above.  For example, evaluating
the expression

(setq bouquet (cons 'lily bouquet))

produces:

bouquet                       flowers
  |                             |
  |     ___ ___        ___ ___  |     ___ ___       ___ ___
   --> |   |   |      |   |   |  --> |   |   |     |   |   |
       |___|___|----> |___|___|----> |___|___|---->|___|___|--> nil
         |              |              |             |
         |              |              |             |
          --> lily      --> rose       --> violet    --> buttercup

However, this does not change the value of the symbol
flowers, as you can see by evaluating the following,

(eq (cdr (cdr bouquet)) flowers)

which returns t for true.
Until it is reset, flowers still has the value
(violet buttercup); that is, it has the address of the cons
cell whose first address is of violet.  Also, this does not
alter any of the pre-existing cons cells; they are all still there.
Thus, in Lisp, to get the cdr of a list, you just get the address
of the next cons cell in the series; to get the car of a list,
you get the address of the first element of the list; to cons a
new element on a list, you add a new cons cell to the front of the list.
That is all there is to it!  The underlying structure of Lisp is
brilliantly simple!
And what does the last address in a series of cons cells refer to?  It
is the address of the empty list, of nil.
In summary, when a Lisp variable is set to a value, it is provided with
the address of the list to which the variable refers.


Symbols as a Chest of Drawers




In an earlier section, I suggested that you might imagine a symbol as
being a chest of drawers.  The function definition is put in one
drawer, the value in another, and so on.  What is put in the drawer
holding the value can be changed without affecting the contents of the
drawer holding the function definition, and vice-verse.
Actually, what is put in each drawer is the address of the value or
function definition.  It is as if you found an old chest in the attic,
and in one of its drawers you found a map giving you directions to
where the buried treasure lies.
(In addition to its name, symbol definition, and variable value, a
symbol has a `drawer' for a property list which can be used to
record other information.  Property lists are not discussed here; see
See section ``Property Lists'' in The GNU Emacs Lisp Reference Manual.)
Here is a fanciful representation:

            Chest of Drawers            Contents of Drawers

            __   o0O0o   __
          /                 \
         ---------------------
        |    directions to    |            [map to]
        |     symbol name     |             bouquet
        |                     |
        +---------------------+
        |    directions to    |
        |  symbol definition  |             [none]
        |                     |
        +---------------------+
        |    directions to    |            [map to]
        |    variable value   |             (rose violet buttercup)
        |                     |
        +---------------------+
        |    directions to    |
        |    property list    |             [not described here]
        |                     |
        +---------------------+
        |/                   \|


Exercise



Set flowers to violet and buttercup.  Cons two
more flowers on to this list and set this new list to
more-flowers.  Set the car of flowers to a fish.
What does the more-flowers list now contain?

Chapter 10. Yanking Text Back




Whenever you cut text out of a buffer with a `kill' command in GNU Emacs,
you can bring it back with a `yank' command.  The text that is cut out of
the buffer is put in the kill ring and the yank commands insert the
appropriate contents of the kill ring back into a buffer (not necessarily
the original buffer).
A simple C-y (yank) command inserts the first item from
the kill ring into the current buffer.  If the C-y command is
followed immediately by M-y, the first element is replaced by
the second element.  Successive M-y commands replace the second
element with the third, fourth, or fifth element, and so on.  When the
last element in the kill ring is reached, it is replaced by the first
element and the cycle is repeated.  (Thus the kill ring is called a
`ring' rather than just a `list'.  However, the actual data structure
that holds the text is a list.
See Handling the Kill Ring, for the details of how the
list is handled as a ring.)
Kill Ring Overview




The kill ring is a list of textual strings.  This is what it looks like:

("some text" "a different piece of text" "yet more text")

If this were the contents of my kill ring and I pressed C-y, the
string of characters saying ‘some text’ would be inserted in this
buffer where my cursor is located.
The yank command is also used for duplicating text by copying it.
The copied text is not cut from the buffer, but a copy of it is put on the
kill ring and is inserted by yanking it back.
Three functions are used for bringing text back from the kill ring:
yank, which is usually bound to C-y; yank-pop,
which is usually bound to M-y; and rotate-yank-pointer,
which is used by the two other functions.
These functions refer to the kill ring through a variable called the
kill-ring-yank-pointer.  Indeed, the insertion code for both the
yank and yank-pop functions is:

(insert (car kill-ring-yank-pointer))

(Well, no more.  In GNU Emacs 22, the function has been replaced by
insert-for-yank which calls insert-for-yank-1
repetitively for each yank-handler segment.  In turn,
insert-for-yank-1 strips text properties from the inserted text
according to yank-excluded-properties.  Otherwise, it is just
like insert.  We will stick with plain insert since it
is easier to understand.)
To begin to understand how yank and yank-pop work, it is
first necessary to look at the kill-ring-yank-pointer variable.


The kill-ring-yank-pointer Variable



kill-ring-yank-pointer is a variable, just as kill-ring is
a variable.  It points to something by being bound to the value of what
it points to, like any other Lisp variable.
Thus, if the value of the kill ring is:

("some text" "a different piece of text" "yet more text")

and the kill-ring-yank-pointer points to the second clause, the
value of kill-ring-yank-pointer is:

("a different piece of text" "yet more text")

As explained in the previous chapter (see Chapter 9, How Lists are Implemented), the
computer does not keep two different copies of the text being pointed to
by both the kill-ring and the kill-ring-yank-pointer.  The
words “a different piece of text” and “yet more text” are not
duplicated.  Instead, the two Lisp variables point to the same pieces of
text.  Here is a diagram:

kill-ring     kill-ring-yank-pointer
    |               |
    |      ___ ___  |     ___ ___      ___ ___
     ---> |   |   |  --> |   |   |    |   |   |
          |___|___|----> |___|___|--> |___|___|--> nil
            |              |            |
            |              |            |
            |              |             --> "yet more text"
            |              |
            |               --> "a different piece of text"
            |
             --> "some text"

Both the variable kill-ring and the variable
kill-ring-yank-pointer are pointers.  But the kill ring itself is
usually described as if it were actually what it is composed of.  The
kill-ring is spoken of as if it were the list rather than that it
points to the list.  Conversely, the kill-ring-yank-pointer is
spoken of as pointing to a list.
These two ways of talking about the same thing sound confusing at first but
make sense on reflection.  The kill ring is generally thought of as the
complete structure of data that holds the information of what has recently
been cut out of the Emacs buffers.  The kill-ring-yank-pointer
on the other hand, serves to indicate—that is, to `point to'—that part
of the kill ring of which the first element (the car) will be
inserted.

Exercises with yank and nthcdr



	Using C-h v (describe-variable), look at the value of
your kill ring.  Add several items to your kill ring; look at its
value again.  Using M-y (yank-pop), move all the way
around the kill ring.  How many items were in your kill ring?  Find
the value of kill-ring-max.  Was your kill ring full, or could
you have kept more blocks of text within it?

	Using nthcdr and car, construct a series of expressions
to return the first, second, third, and fourth elements of a list.




Chapter 11. Loops and Recursion




Emacs Lisp has two primary ways to cause an expression, or a series of
expressions, to be evaluated repeatedly: one uses a while
loop, and the other uses recursion.
Repetition can be very valuable.  For example, to move forward four
sentences, you need only write a program that will move forward one
sentence and then repeat the process four times.  Since a computer does
not get bored or tired, such repetitive action does not have the
deleterious effects that excessive or the wrong kinds of repetition can
have on humans.
People mostly write Emacs Lisp functions using while loops and
their kin; but you can use recursion, which provides a very powerful
way to think about and then to solve problems[11].
while




The while special form tests whether the value returned by
evaluating its first argument is true or false.  This is similar to what
the Lisp interpreter does with an if; what the interpreter does
next, however, is different.
In a while expression, if the value returned by evaluating the
first argument is false, the Lisp interpreter skips the rest of the
expression (the body of the expression) and does not evaluate it.
However, if the value is true, the Lisp interpreter evaluates the body
of the expression and then again tests whether the first argument to
while is true or false.  If the value returned by evaluating the
first argument is again true, the Lisp interpreter again evaluates the
body of the expression.
The template for a while expression looks like this:

(while true-or-false-test
  body…)

Looping with while



So long as the true-or-false-test of the while expression
returns a true value when it is evaluated, the body is repeatedly
evaluated.  This process is called a loop since the Lisp interpreter
repeats the same thing again and again, like an airplane doing a loop.
When the result of evaluating the true-or-false-test is false, the
Lisp interpreter does not evaluate the rest of the while
expression and `exits the loop'.
Clearly, if the value returned by evaluating the first argument to
while is always true, the body following will be evaluated
again and again … and again … forever.  Conversely, if the
value returned is never true, the expressions in the body will never
be evaluated.  The craft of writing a while loop consists of
choosing a mechanism such that the true-or-false-test returns true
just the number of times that you want the subsequent expressions to
be evaluated, and then have the test return false.
The value returned by evaluating a while is the value of the
true-or-false-test.  An interesting consequence of this is that a
while loop that evaluates without error will return nil
or false regardless of whether it has looped 1 or 100 times or none at
all.  A while expression that evaluates successfully never
returns a true value!  What this means is that while is always
evaluated for its side effects, which is to say, the consequences of
evaluating the expressions within the body of the while loop.
This makes sense.  It is not the mere act of looping that is desired,
but the consequences of what happens when the expressions in the loop
are repeatedly evaluated.

A while Loop and a List



A common way to control a while loop is to test whether a list
has any elements.  If it does, the loop is repeated; but if it does not,
the repetition is ended.  Since this is an important technique, we will
create a short example to illustrate it.
A simple way to test whether a list has elements is to evaluate the
list: if it has no elements, it is an empty list and will return the
empty list, (), which is a synonym for nil or false.  On
the other hand, a list with elements will return those elements when it
is evaluated.  Since Emacs Lisp considers as true any value that is not
nil, a list that returns elements will test true in a
while loop.
For example, you can set the variable empty-list to nil by
evaluating the following setq expression:

(setq empty-list ())

After evaluating the setq expression, you can evaluate the
variable empty-list in the usual way, by placing the cursor after
the symbol and typing C-x C-e; nil will appear in your
echo area:

empty-list

On the other hand, if you set a variable to be a list with elements, the
list will appear when you evaluate the variable, as you can see by
evaluating the following two expressions:

(setq animals '(gazelle giraffe lion tiger))

animals

Thus, to create a while loop that tests whether there are any
items in the list animals, the first part of the loop will be
written like this:

(while animals
       …

When the while tests its first argument, the variable
animals is evaluated.  It returns a list.  So long as the list
has elements, the while considers the results of the test to be
true; but when the list is empty, it considers the results of the test
to be false.
To prevent the while loop from running forever, some mechanism
needs to be provided to empty the list eventually.  An oft-used
technique is to have one of the subsequent forms in the while
expression set the value of the list to be the cdr of the list.
Each time the cdr function is evaluated, the list will be made
shorter, until eventually only the empty list will be left.  At this
point, the test of the while loop will return false, and the
arguments to the while will no longer be evaluated.
For example, the list of animals bound to the variable animals
can be set to be the cdr of the original list with the
following expression:

(setq animals (cdr animals))

If you have evaluated the previous expressions and then evaluate this
expression, you will see (giraffe lion tiger) appear in the echo
area.  If you evaluate the expression again, (lion tiger) will
appear in the echo area.  If you evaluate it again and yet again,
(tiger) appears and then the empty list, shown by nil.
A template for a while loop that uses the cdr function
repeatedly to cause the true-or-false-test eventually to test false
looks like this:

(while test-whether-list-is-empty
  body…
  set-list-to-cdr-of-list)

This test and use of cdr can be put together in a function that
goes through a list and prints each element of the list on a line of its
own.

An Example: print-elements-of-list




The print-elements-of-list function illustrates a while
loop with a list.
The function requires several lines for its output.  If you are
reading this in a recent instance of GNU Emacs,
you can evaluate the following expression inside of Info, as usual.
If you are using an earlier version of Emacs, you need to copy the
necessary expressions to your *scratch* buffer and evaluate
them there.  This is because the echo area had only one line in the
earlier versions.
You can copy the expressions by marking the beginning of the region
with C-SPC (set-mark-command), moving the cursor to
the end of the region and then copying the region using M-w
(kill-ring-save, which calls copy-region-as-kill and
then provides visual feedback).  In the *scratch*
buffer, you can yank the expressions back by typing C-y
(yank).
After you have copied the expressions to the *scratch* buffer,
evaluate each expression in turn.  Be sure to evaluate the last
expression, (print-elements-of-list animals), by typing
C-u C-x C-e, that is, by giving an argument to
eval-last-sexp.  This will cause the result of the evaluation
to be printed in the *scratch* buffer instead of being printed
in the echo area.  (Otherwise you will see something like this in your
echo area: ^Jgazelle^J^Jgiraffe^J^Jlion^J^Jtiger^Jnil, in which
each ‘^J’ stands for a `newline'.)
In a recent instance of GNU Emacs, you can evaluate these expressions
directly in the Info buffer, and the echo area will grow to show the
results.

(setq animals '(gazelle giraffe lion tiger))

(defun print-elements-of-list (list)
  "Print each element of LIST on a line of its own."
  (while list
    (print (car list))
    (setq list (cdr list))))

(print-elements-of-list animals)

When you evaluate the three expressions in sequence, you will see
this:

gazelle

giraffe

lion

tiger
nil

Each element of the list is printed on a line of its own (that is what
the function print does) and then the value returned by the
function is printed.  Since the last expression in the function is the
while loop, and since while loops always return
nil, a nil is printed after the last element of the list.

A Loop with an Incrementing Counter



A loop is not useful unless it stops when it ought.  Besides
controlling a loop with a list, a common way of stopping a loop is to
write the first argument as a test that returns false when the correct
number of repetitions are complete.  This means that the loop must
have a counter—an expression that counts how many times the loop
repeats itself.

Details of an Incrementing Loop



The test for a loop with an incrementing counter can be an expression
such as (< count desired-number) which returns t for
true if the value of count is less than the
desired-number of repetitions and nil for false if the
value of count is equal to or is greater than the
desired-number.  The expression that increments the count can
be a simple setq such as (setq count (1+ count)), where
1+ is a built-in function in Emacs Lisp that adds 1 to its
argument.  (The expression (1+ count) has the same result
as (+ count 1), but is easier for a human to read.)
The template for a while loop controlled by an incrementing
counter looks like this:

set-count-to-initial-value
(while (< count desired-number)         ; true-or-false-test
  body…
  (setq count (1+ count)))              ; incrementer
     
Note that you need to set the initial value of count; usually it
is set to 1.
Example with incrementing counter



Suppose you are playing on the beach and decide to make a triangle of
pebbles, putting one pebble in the first row, two in the second row,
three in the third row and so on, like this:

               *
              * *
             * * *
            * * * *
     
(About 2500 years ago, Pythagoras and others developed the beginnings of
number theory by considering questions such as this.)
Suppose you want to know how many pebbles you will need to make a
triangle with 7 rows?
Clearly, what you need to do is add up the numbers from 1 to 7.  There
are two ways to do this; start with the smallest number, one, and add up
the list in sequence, 1, 2, 3, 4 and so on; or start with the largest
number and add the list going down: 7, 6, 5, 4 and so on.  Because both
mechanisms illustrate common ways of writing while loops, we will
create two examples, one counting up and the other counting down.  In
this first example, we will start with 1 and add 2, 3, 4 and so on.
If you are just adding up a short list of numbers, the easiest way to do
it is to add up all the numbers at once.  However, if you do not know
ahead of time how many numbers your list will have, or if you want to be
prepared for a very long list, then you need to design your addition so
that what you do is repeat a simple process many times instead of doing
a more complex process once.
For example, instead of adding up all the pebbles all at once, what you
can do is add the number of pebbles in the first row, 1, to the number
in the second row, 2, and then add the total of those two rows to the
third row, 3.  Then you can add the number in the fourth row, 4, to the
total of the first three rows; and so on.
The critical characteristic of the process is that each repetitive
action is simple.  In this case, at each step we add only two numbers,
the number of pebbles in the row and the total already found.  This
process of adding two numbers is repeated again and again until the last
row has been added to the total of all the preceding rows.  In a more
complex loop the repetitive action might not be so simple, but it will
be simpler than doing everything all at once.

The parts of the function definition



The preceding analysis gives us the bones of our function definition:
first, we will need a variable that we can call total that will
be the total number of pebbles.  This will be the value returned by
the function.
Second, we know that the function will require an argument: this
argument will be the total number of rows in the triangle.  It can be
called number-of-rows.
Finally, we need a variable to use as a counter.  We could call this
variable counter, but a better name is row-number.  That
is because what the counter does in this function is count rows, and a
program should be written to be as understandable as possible.
When the Lisp interpreter first starts evaluating the expressions in the
function, the value of total should be set to zero, since we have
not added anything to it.  Then the function should add the number of
pebbles in the first row to the total, and then add the number of
pebbles in the second to the total, and then add the number of
pebbles in the third row to the total, and so on, until there are no
more rows left to add.
Both total and row-number are used only inside the
function, so they can be declared as local variables with let
and given initial values.  Clearly, the initial value for total
should be 0.  The initial value of row-number should be 1,
since we start with the first row.  This means that the let
statement will look like this:

  (let ((total 0)
        (row-number 1))
    body…)
     
After the internal variables are declared and bound to their initial
values, we can begin the while loop.  The expression that serves
as the test should return a value of t for true so long as the
row-number is less than or equal to the number-of-rows.
(If the expression tests true only so long as the row number is less
than the number of rows in the triangle, the last row will never be
added to the total; hence the row number has to be either less than or
equal to the number of rows.)
Lisp provides the <= function that returns true if the value of
its first argument is less than or equal to the value of its second
argument and false otherwise.  So the expression that the while
will evaluate as its test should look like this:

(<= row-number number-of-rows)

The total number of pebbles can be found by repeatedly adding the number
of pebbles in a row to the total already found.  Since the number of
pebbles in the row is equal to the row number, the total can be found by
adding the row number to the total.  (Clearly, in a more complex
situation, the number of pebbles in the row might be related to the row
number in a more complicated way; if this were the case, the row number
would be replaced by the appropriate expression.)

(setq total (+ total row-number))

What this does is set the new value of total to be equal to the
sum of adding the number of pebbles in the row to the previous total.
After setting the value of total, the conditions need to be
established for the next repetition of the loop, if there is one.  This
is done by incrementing the value of the row-number variable,
which serves as a counter.  After the row-number variable has
been incremented, the true-or-false-test at the beginning of the
while loop tests whether its value is still less than or equal to
the value of the number-of-rows and if it is, adds the new value
of the row-number variable to the total of the previous
repetition of the loop.
The built-in Emacs Lisp function 1+ adds 1 to a number, so the
row-number variable can be incremented with this expression:

(setq row-number (1+ row-number))


Putting the function definition together



We have created the parts for the function definition; now we need to
put them together.
First, the contents of the while expression:

(while (<= row-number number-of-rows)   ; true-or-false-test
  (setq total (+ total row-number))
  (setq row-number (1+ row-number)))    ; incrementer
     
Along with the let expression varlist, this very nearly
completes the body of the function definition.  However, it requires
one final element, the need for which is somewhat subtle.
The final touch is to place the variable total on a line by
itself after the while expression.  Otherwise, the value returned
by the whole function is the value of the last expression that is
evaluated in the body of the let, and this is the value
returned by the while, which is always nil.
This may not be evident at first sight.  It almost looks as if the
incrementing expression is the last expression of the whole function.
But that expression is part of the body of the while; it is the
last element of the list that starts with the symbol while.
Moreover, the whole of the while loop is a list within the body
of the let.
In outline, the function will look like this:

(defun name-of-function (argument-list)
  "documentation…"
  (let (varlist)
    (while (true-or-false-test)
      body-of-while… )
    … ))                    ; Need final expression here.

The result of evaluating the let is what is going to be returned
by the defun since the let is not embedded within any
containing list, except for the defun as a whole.  However, if
the while is the last element of the let expression, the
function will always return nil.  This is not what we want!
Instead, what we want is the value of the variable total.  This
is returned by simply placing the symbol as the last element of the list
starting with let.  It gets evaluated after the preceding
elements of the list are evaluated, which means it gets evaluated after
it has been assigned the correct value for the total.
It may be easier to see this by printing the list starting with
let all on one line.  This format makes it evident that the
varlist and while expressions are the second and third
elements of the list starting with let, and the total is
the last element:

(let (varlist) (while (true-or-false-test) body-of-while… ) total)

Putting everything together, the triangle function definition
looks like this:

(defun triangle (number-of-rows)    ; Version with
                                    ;   incrementing counter.
  "Add up the number of pebbles in a triangle.
The first row has one pebble, the second row two pebbles,
the third row three pebbles, and so on.
The argument is NUMBER-OF-ROWS."
  (let ((total 0)
        (row-number 1))
    (while (<= row-number number-of-rows)
      (setq total (+ total row-number))
      (setq row-number (1+ row-number)))
    total))

After you have installed triangle by evaluating the function, you
can try it out.  Here are two examples:

(triangle 4)

(triangle 7)

The sum of the first four numbers is 10 and the sum of the first seven
numbers is 28.


Loop with a Decrementing Counter



Another common way to write a while loop is to write the test
so that it determines whether a counter is greater than zero.  So long
as the counter is greater than zero, the loop is repeated.  But when
the counter is equal to or less than zero, the loop is stopped.  For
this to work, the counter has to start out greater than zero and then
be made smaller and smaller by a form that is evaluated
repeatedly.
The test will be an expression such as (> counter 0) which
returns t for true if the value of counter is greater
than zero, and nil for false if the value of counter is
equal to or less than zero.  The expression that makes the number
smaller and smaller can be a simple setq such as (setq
counter (1- counter)), where 1- is a built-in function in
Emacs Lisp that subtracts 1 from its argument.
The template for a decrementing while loop looks like this:

(while (> counter 0)                    ; true-or-false-test
  body…
  (setq counter (1- counter)))          ; decrementer

Example with decrementing counter



To illustrate a loop with a decrementing counter, we will rewrite the
triangle function so the counter decreases to zero.
This is the reverse of the earlier version of the function.  In this
case, to find out how many pebbles are needed to make a triangle with
3 rows, add the number of pebbles in the third row, 3, to the number
in the preceding row, 2, and then add the total of those two rows to
the row that precedes them, which is 1.
Likewise, to find the number of pebbles in a triangle with 7 rows, add
the number of pebbles in the seventh row, 7, to the number in the
preceding row, which is 6, and then add the total of those two rows to
the row that precedes them, which is 5, and so on.  As in the previous
example, each addition only involves adding two numbers, the total of
the rows already added up and the number of pebbles in the row that is
being added to the total.  This process of adding two numbers is
repeated again and again until there are no more pebbles to add.
We know how many pebbles to start with: the number of pebbles in the
last row is equal to the number of rows.  If the triangle has seven
rows, the number of pebbles in the last row is 7.  Likewise, we know how
many pebbles are in the preceding row: it is one less than the number in
the row.

The parts of the function definition



We start with three variables: the total number of rows in the
triangle; the number of pebbles in a row; and the total number of
pebbles, which is what we want to calculate.  These variables can be
named number-of-rows, number-of-pebbles-in-row, and
total, respectively.
Both total and number-of-pebbles-in-row are used only
inside the function and are declared with let.  The initial
value of total should, of course, be zero.  However, the
initial value of number-of-pebbles-in-row should be equal to
the number of rows in the triangle, since the addition will start with
the longest row.
This means that the beginning of the let expression will look
like this:

(let ((total 0)
      (number-of-pebbles-in-row number-of-rows))
  body…)
     
The total number of pebbles can be found by repeatedly adding the number
of pebbles in a row to the total already found, that is, by repeatedly
evaluating the following expression:

(setq total (+ total number-of-pebbles-in-row))

After the number-of-pebbles-in-row is added to the total,
the number-of-pebbles-in-row should be decremented by one, since
the next time the loop repeats, the preceding row will be
added to the total.
The number of pebbles in a preceding row is one less than the number of
pebbles in a row, so the built-in Emacs Lisp function 1- can be
used to compute the number of pebbles in the preceding row.  This can be
done with the following expression:

(setq number-of-pebbles-in-row
      (1- number-of-pebbles-in-row))

Finally, we know that the while loop should stop making repeated
additions when there are no pebbles in a row.  So the test for
the while loop is simply:

(while (> number-of-pebbles-in-row 0)


Putting the function definition together



We can put these expressions together to create a function definition
that works.  However, on examination, we find that one of the local
variables is unneeded!
The function definition looks like this:

;;; First subtractive version.
(defun triangle (number-of-rows)
  "Add up the number of pebbles in a triangle."
  (let ((total 0)
        (number-of-pebbles-in-row number-of-rows))
    (while (> number-of-pebbles-in-row 0)
      (setq total (+ total number-of-pebbles-in-row))
      (setq number-of-pebbles-in-row
            (1- number-of-pebbles-in-row)))
    total))
     
As written, this function works.
However, we do not need number-of-pebbles-in-row.
When the triangle function is evaluated, the symbol
number-of-rows will be bound to a number, giving it an initial
value.  That number can be changed in the body of the function as if
it were a local variable, without any fear that such a change will
effect the value of the variable outside of the function.  This is a
very useful characteristic of Lisp; it means that the variable
number-of-rows can be used anywhere in the function where
number-of-pebbles-in-row is used.
Here is a second version of the function written a bit more cleanly:

(defun triangle (number)                ; Second version.
  "Return sum of numbers 1 through NUMBER inclusive."
  (let ((total 0))
    (while (> number 0)
      (setq total (+ total number))
      (setq number (1- number)))
    total))

In brief, a properly written while loop will consist of three parts:
	A test that will return false after the loop has repeated itself the
correct number of times.

	An expression the evaluation of which will return the value desired
after being repeatedly evaluated.

	An expression to change the value passed to the true-or-false-test so
that the test returns false after the loop has repeated itself the right
number of times.








[11] You can write
recursive functions to be frugal or wasteful of mental or computer
resources; as it happens, methods that people find easy—that are
frugal of `mental resources'—sometimes use considerable computer
resources.  Emacs was designed to run on machines that we now consider
limited and its default settings are conservative.  You may want to
increase the values of max-specpdl-size and
max-lisp-eval-depth.  In my .emacs file, I set them to
15 and 30 times their default value.



Save your time: dolist and dotimes



In addition to while, both dolist and dotimes
provide for looping.  Sometimes these are quicker to write than the
equivalent while loop.  Both are Lisp macros.  (See See section ``Macros'' in The GNU Emacs Lisp Reference Manual. )
dolist works like a while loop that `cdrs down a
list':  dolist automatically shortens the list each time it
loops—takes the cdr of the list—and binds the car of
each shorter version of the list to the first of its arguments.
dotimes loops a specific number of times: you specify the number.
The dolist Macro




Suppose, for example, you want to reverse a list, so that
“first” “second” “third” becomes “third” “second” “first”.
In practice, you would use the reverse function, like this:

(setq animals '(gazelle giraffe lion tiger))

(reverse animals)
     
Here is how you could reverse the list using a while loop:

(setq animals '(gazelle giraffe lion tiger))

(defun reverse-list-with-while (list)
  "Using while, reverse the order of LIST."
  (let (value)  ; make sure list starts empty
    (while list
      (setq value (cons (car list) value))
      (setq list (cdr list)))
    value))

(reverse-list-with-while animals)

And here is how you could use the dolist macro:

(setq animals '(gazelle giraffe lion tiger))

(defun reverse-list-with-dolist (list)
  "Using dolist, reverse the order of LIST."
  (let (value)  ; make sure list starts empty
    (dolist (element list value)
      (setq value (cons element value)))))

(reverse-list-with-dolist animals)

In Info, you can place your cursor after the closing parenthesis of
each expression and type C-x C-e; in each case, you should see

(tiger lion giraffe gazelle)

in the echo area.
For this example, the existing reverse function is obviously best.
The while loop is just like our first example (see A while Loop and a List).  The while first
checks whether the list has elements; if so, it constructs a new list
by adding the first element of the list to the existing list (which in
the first iteration of the loop is nil).  Since the second
element is prepended in front of the first element, and the third
element is prepended in front of the second element, the list is reversed.
In the expression using a while loop,
the (setq list (cdr list))
expression shortens the list, so the while loop eventually
stops.  In addition, it provides the cons expression with a new
first element by creating a new and shorter list at each repetition of
the loop.
The dolist expression does very much the same as the
while expression, except that the dolist macro does some
of the work you have to do when writing a while expression.
Like a while loop, a dolist loops.  What is different is
that it automatically shortens the list each time it loops — it
`cdrs down the list' on its own — and it automatically binds
the car of each shorter version of the list to the first of its
arguments.
In the example, the car of each shorter version of the list is
referred to using the symbol ‘element’, the list itself is called
‘list’, and the value returned is called ‘value’.  The
remainder of the dolist expression is the body.
The dolist expression binds the car of each shorter
version of the list to element and then evaluates the body of
the expression; and repeats the loop.  The result is returned in
value.

The dotimes Macro




The dotimes macro is similar to dolist, except that it
loops a specific number of times.
The first argument to dotimes is assigned the numbers 0, 1, 2
and so forth each time around the loop, and the value of the third
argument is returned.  You need to provide the value of the second
argument, which is how many times the macro loops.
For example, the following binds the numbers from 0 up to, but not
including, the number 3 to the first argument, number, and then
constructs a list of the three numbers.  (The first number is 0, the
second number is 1, and the third number is 2; this makes a total of
three numbers in all, starting with zero as the first number.)

(let (value)      ; otherwise a value is a void variable
  (dotimes (number 3 value)
    (setq value (cons number value))))

⇒ (2 1 0)
     
dotimes returns value, so the way to use
dotimes is to operate on some expression number number of
times and then return the result, either as a list or an atom.
Here is an example of a defun that uses dotimes to add
up the number of pebbles in a triangle.

(defun triangle-using-dotimes (number-of-rows)
  "Using dotimes, add up the number of pebbles in a triangle."
(let ((total 0))  ; otherwise a total is a void variable
  (dotimes (number number-of-rows total)
    (setq total (+ total (1+ number))))))

(triangle-using-dotimes 4)



Recursion




A recursive function contains code that tells the Lisp interpreter to
call a program that runs exactly like itself, but with slightly
different arguments.  The code runs exactly the same because it has
the same name.  However, even though the program has the same name, it
is not the same entity.  It is different.  In the jargon, it is a
different `instance'.
Eventually, if the program is written correctly, the `slightly
different arguments' will become sufficiently different from the first
arguments that the final instance will stop.
Building Robots: Extending the Metaphor




It is sometimes helpful to think of a running program as a robot that
does a job.  In doing its job, a recursive function calls on a second
robot to help it.  The second robot is identical to the first in every
way, except that the second robot helps the first and has been
passed different arguments than the first.
In a recursive function, the second robot may call a third; and the
third may call a fourth, and so on.  Each of these is a different
entity; but all are clones.
Since each robot has slightly different instructions—the arguments
will differ from one robot to the next—the last robot should know
when to stop.
Let's expand on the metaphor in which a computer program is a robot.
A function definition provides the blueprints for a robot.  When you
install a function definition, that is, when you evaluate a
defun special form, you install the necessary equipment to
build robots.  It is as if you were in a factory, setting up an
assembly line.  Robots with the same name are built according to the
same blueprints.  So they have, as it were, the same `model number',
but a different `serial number'.
We often say that a recursive function `calls itself'.  What we mean
is that the instructions in a recursive function cause the Lisp
interpreter to run a different function that has the same name and
does the same job as the first, but with different arguments.
It is important that the arguments differ from one instance to the
next; otherwise, the process will never stop.

The Parts of a Recursive Definition




A recursive function typically contains a conditional expression which
has three parts:
	A true-or-false-test that determines whether the function is called
again, here called the do-again-test.

	The name of the function.  When this name is called, a new instance of
the function—a new robot, as it were—is created and told what to do.

	An expression that returns a different value each time the function is
called, here called the next-step-expression.  Consequently, the
argument (or arguments) passed to the new instance of the function
will be different from that passed to the previous instance.  This
causes the conditional expression, the do-again-test, to test
false after the correct number of repetitions.



Recursive functions can be much simpler than any other kind of
function.  Indeed, when people first start to use them, they often look
so mysteriously simple as to be incomprehensible.  Like riding a
bicycle, reading a recursive function definition takes a certain knack
which is hard at first but then seems simple.
There are several different common recursive patterns.  A very simple
pattern looks like this:

(defun name-of-recursive-function (argument-list)
  "documentation…"
  (if do-again-test
    body…
    (name-of-recursive-function
         next-step-expression)))

Each time a recursive function is evaluated, a new instance of it is
created and told what to do.  The arguments tell the instance what to do.
An argument is bound to the value of the next-step-expression.  Each
instance runs with a different value of the next-step-expression.
The value in the next-step-expression is used in the do-again-test.
The value returned by the next-step-expression is passed to the new
instance of the function, which evaluates it (or some
transmogrification of it) to determine whether to continue or stop.
The next-step-expression is designed so that the do-again-test returns
false when the function should no longer be repeated.
The do-again-test is sometimes called the stop condition,
since it stops the repetitions when it tests false.

Recursion with a List



The example of a while loop that printed the elements of a list
of numbers can be written recursively.  Here is the code, including
an expression to set the value of the variable animals to a list.
If you are using GNU Emacs 20 or before, this example must be copied
to the *scratch* buffer and each expression must be evaluated
there.  Use C-u C-x C-e to evaluate the
(print-elements-recursively animals) expression so that the
results are printed in the buffer; otherwise the Lisp interpreter will
try to squeeze the results into the one line of the echo area.
Also, place your cursor immediately after the last closing parenthesis
of the print-elements-recursively function, before the comment.
Otherwise, the Lisp interpreter will try to evaluate the comment.
If you are using a more recent version of Emacs, you can evaluate this
expression directly in Info.


(setq animals '(gazelle giraffe lion tiger))

(defun print-elements-recursively (list)
  "Print each element of LIST on a line of its own.
Uses recursion."
  (when list                            ; do-again-test
        (print (car list))              ; body
        (print-elements-recursively     ; recursive call
         (cdr list))))                  ; next-step-expression

(print-elements-recursively animals)

The print-elements-recursively function first tests whether
there is any content in the list; if there is, the function prints the
first element of the list, the car of the list.  Then the
function `invokes itself', but gives itself as its argument, not the
whole list, but the second and subsequent elements of the list, the
cdr of the list.
Put another way, if the list is not empty, the function invokes
another instance of code that is similar to the initial code, but is a
different thread of execution, with different arguments than the first
instance.
Put in yet another way, if the list is not empty, the first robot
assembles a second robot and tells it what to do; the second robot is
a different individual from the first, but is the same model.
When the second evaluation occurs, the when expression is
evaluated and if true, prints the first element of the list it
receives as its argument (which is the second element of the original
list).  Then the function `calls itself' with the cdr of the list
it is invoked with, which (the second time around) is the cdr of
the cdr of the original list.
Note that although we say that the function `calls itself', what we
mean is that the Lisp interpreter assembles and instructs a new
instance of the program.  The new instance is a clone of the first,
but is a separate individual.
Each time the function `invokes itself', it invokes itself on a
shorter version of the original list.  It creates a new instance that
works on a shorter list.
Eventually, the function invokes itself on an empty list.  It creates
a new instance whose argument is nil.  The conditional expression
tests the value of list.  Since the value of list is
nil, the when expression tests false so the then-part is
not evaluated.  The function as a whole then returns nil.
When you evaluate the expression (print-elements-recursively
animals) in the *scratch* buffer, you see this result:

gazelle

giraffe

lion

tiger
nil


Recursion in Place of a Counter




The triangle function described in a previous section can also
be written recursively.  It looks like this:

(defun triangle-recursively (number)
  "Return the sum of the numbers 1 through NUMBER inclusive.
Uses recursion."
  (if (= number 1)                    ; do-again-test
      1                               ; then-part
    (+ number                         ; else-part
       (triangle-recursively          ; recursive call
        (1- number)))))               ; next-step-expression

(triangle-recursively 7)

You can install this function by evaluating it and then try it by
evaluating (triangle-recursively 7).  (Remember to put your
cursor immediately after the last parenthesis of the function
definition, before the comment.)  The function evaluates to 28.
To understand how this function works, let's consider what happens in the
various cases when the function is passed 1, 2, 3, or 4 as the value of
its argument.
An argument of 1 or 2



First, what happens if the value of the argument is 1?
The function has an if expression after the documentation
string.  It tests whether the value of number is equal to 1; if
so, Emacs evaluates the then-part of the if expression, which
returns the number 1 as the value of the function.  (A triangle with
one row has one pebble in it.)
Suppose, however, that the value of the argument is 2.  In this case,
Emacs evaluates the else-part of the if expression.
The else-part consists of an addition, the recursive call to
triangle-recursively and a decrementing action; and it looks like
this:

(+ number (triangle-recursively (1- number)))

When Emacs evaluates this expression, the innermost expression is
evaluated first; then the other parts in sequence.  Here are the steps
in detail:
	Step 1    Evaluate the innermost expression.
	The innermost expression is (1- number) so Emacs decrements the
value of number from 2 to 1.

	Step 2    Evaluate the triangle-recursively function.
	The Lisp interpreter creates an individual instance of
triangle-recursively.  It does not matter that this function is
contained within itself.  Emacs passes the result Step 1 as the
argument used by this instance of the triangle-recursively
function
In this case, Emacs evaluates triangle-recursively with an
argument of 1.  This means that this evaluation of
triangle-recursively returns 1.

	Step 3    Evaluate the value of number.
	The variable number is the second element of the list that
starts with +; its value is 2.

	Step 4    Evaluate the + expression.
	The + expression receives two arguments, the first
from the evaluation of number (Step 3) and the second from the
evaluation of triangle-recursively (Step 2).
The result of the addition is the sum of 2 plus 1, and the number 3 is
returned, which is correct.  A triangle with two rows has three
pebbles in it.




An argument of 3 or 4



Suppose that triangle-recursively is called with an argument of
3.
	Step 1    Evaluate the do-again-test.
	The if expression is evaluated first.  This is the do-again
test and returns false, so the else-part of the if expression
is evaluated.  (Note that in this example, the do-again-test causes
the function to call itself when it tests false, not when it tests
true.)

	Step 2    Evaluate the innermost expression of the else-part.
	The innermost expression of the else-part is evaluated, which decrements
3 to 2.  This is the next-step-expression.

	Step 3    Evaluate the triangle-recursively function.
	The number 2 is passed to the triangle-recursively function.
We already know what happens when Emacs evaluates triangle-recursively with
an argument of 2.  After going through the sequence of actions described
earlier, it returns a value of 3.  So that is what will happen here.

	Step 4    Evaluate the addition.
	3 will be passed as an argument to the addition and will be added to the
number with which the function was called, which is 3.



The value returned by the function as a whole will be 6.
Now that we know what will happen when triangle-recursively is
called with an argument of 3, it is evident what will happen if it is
called with an argument of 4:
In the recursive call, the evaluation of

(triangle-recursively (1- 4))

will return the value of evaluating

(triangle-recursively 3)

which is 6 and this value will be added to 4 by the addition in the
third line.


The value returned by the function as a whole will be 10.
Each time triangle-recursively is evaluated, it evaluates a
version of itself—a different instance of itself—with a smaller
argument, until the argument is small enough so that it does not
evaluate itself.
Note that this particular design for a recursive function
requires that operations be deferred.
Before (triangle-recursively 7) can calculate its answer, it
must call (triangle-recursively 6); and before
(triangle-recursively 6) can calculate its answer, it must call
(triangle-recursively 5); and so on.  That is to say, the
calculation that (triangle-recursively 7) makes must be
deferred until (triangle-recursively 6) makes its calculation;
and (triangle-recursively 6) must defer until
(triangle-recursively 5) completes; and so on.
If each of these instances of triangle-recursively are thought
of as different robots, the first robot must wait for the second to
complete its job, which must wait until the third completes, and so
on.
There is a way around this kind of waiting, which we will discuss in
Recursion without Deferments.


Recursion Example Using cond




The version of triangle-recursively described earlier is written
with the if special form.  It can also be written using another
special form called cond.  The name of the special form
cond is an abbreviation of the word ‘conditional’.
Although the cond special form is not used as often in the
Emacs Lisp sources as if, it is used often enough to justify
explaining it.
The template for a cond expression looks like this:

(cond
 body…)

where the body is a series of lists.
Written out more fully, the template looks like this:

(cond
 (first-true-or-false-test first-consequent)
 (second-true-or-false-test second-consequent)
 (third-true-or-false-test third-consequent)
  …)

When the Lisp interpreter evaluates the cond expression, it
evaluates the first element (the car or true-or-false-test) of
the first expression in a series of expressions within the body of the
cond.
If the true-or-false-test returns nil the rest of that
expression, the consequent, is skipped and  the true-or-false-test of the
next expression is evaluated.  When an expression is found whose
true-or-false-test returns a value that is not nil, the
consequent of that expression is evaluated.  The consequent can be one
or more expressions.  If the consequent consists of more than one
expression, the expressions are evaluated in sequence and the value of
the last one is returned.  If the expression does not have a consequent,
the value of the true-or-false-test is returned.
If none of the true-or-false-tests test true, the cond expression
returns nil.
Written using cond, the triangle function looks like this:

(defun triangle-using-cond (number)
  (cond ((<= number 0) 0)
        ((= number 1) 1)
        ((> number 1)
         (+ number (triangle-using-cond (1- number))))))

In this example, the cond returns 0 if the number is less than or
equal to 0, it returns 1 if the number is 1 and it evaluates (+
number (triangle-using-cond (1- number))) if the number is greater than
1.

Recursive Patterns




Here are three common recursive patterns.  Each involves a list.
Recursion does not need to involve lists, but Lisp is designed for lists
and this provides a sense of its primal capabilities.
Recursive Pattern: every




In the every recursive pattern, an action is performed on every
element of a list.
The basic pattern is:
	If a list be empty, return nil.

	Else, act on the beginning of the list (the car of the list)
	through a recursive call by the function on the rest (the
    cdr) of the list,

	and, optionally, combine the acted-on element, using cons,
    with the results of acting on the rest.






Here is example:

(defun square-each (numbers-list)
  "Square each of a NUMBERS LIST, recursively."
  (if (not numbers-list)                ; do-again-test
      nil
    (cons
     (* (car numbers-list) (car numbers-list))
     (square-each (cdr numbers-list))))) ; next-step-expression

(square-each '(1 2 3))
    ⇒ (1 4 9)

If numbers-list is empty, do nothing.  But if it has content,
construct a list combining the square of the first number in the list
with the result of the recursive call.
(The example follows the pattern exactly: nil is returned if
the numbers' list is empty.  In practice, you would write the
conditional so it carries out the action when the numbers' list is not
empty.)
The print-elements-recursively function (see Recursion with a List) is another example of an every
pattern, except in this case, rather than bring the results together
using cons, we print each element of output.
The print-elements-recursively function looks like this:

(setq animals '(gazelle giraffe lion tiger))

(defun print-elements-recursively (list)
  "Print each element of LIST on a line of its own.
Uses recursion."
  (when list                            ; do-again-test
        (print (car list))              ; body
        (print-elements-recursively     ; recursive call
         (cdr list))))                  ; next-step-expression

(print-elements-recursively animals)

The pattern for print-elements-recursively is:
	When the list is empty, do nothing.

	But when the list has at least one element,
	act on the beginning of the list (the car of the list),

	and make a recursive call on the rest (the cdr) of the list.







Recursive Pattern: accumulate




Another recursive pattern is called the accumulate pattern.  In
the accumulate recursive pattern, an action is performed on
every element of a list and the result of that action is accumulated
with the results of performing the action on the other elements.
This is very like the `every' pattern using cons, except that
cons is not used, but some other combiner.
The pattern is:
	If a list be empty, return zero or some other constant.

	Else, act on the beginning of the list (the car of the list),
	and combine that acted-on element, using + or
    some other combining function, with

	a recursive call by the function on the rest (the cdr) of the list.






Here is an example:

(defun add-elements (numbers-list)
  "Add the elements of NUMBERS-LIST together."
  (if (not numbers-list)
      0
    (+ (car numbers-list) (add-elements (cdr numbers-list)))))

(add-elements '(1 2 3 4))
    ⇒ 10

See Making a List of Files, for an example of the
accumulate pattern.

Recursive Pattern: keep




A third recursive pattern is called the keep pattern.
In the keep recursive pattern, each element of a list is tested;
the element is acted on and the results are kept only if the element
meets a criterion.
Again, this is very like the `every' pattern, except the element is
skipped unless it meets a criterion.
The pattern has three parts:
	If a list be empty, return nil.

	Else, if the beginning of the list (the car of the list) passes
        a test
	act on that element and combine it, using cons with

	a recursive call by the function on the rest (the cdr) of the list.




	Otherwise, if the beginning of the list (the car of the list) fails
the test
	skip on that element,

	and, recursively call the function on the rest (the cdr) of the list.






Here is an example that uses cond:

(defun keep-three-letter-words (word-list)
  "Keep three letter words in WORD-LIST."
  (cond
   ;; First do-again-test: stop-condition
   ((not word-list) nil)

   ;; Second do-again-test: when to act
   ((eq 3 (length (symbol-name (car word-list))))
    ;; combine acted-on element with recursive call on shorter list
    (cons (car word-list) (keep-three-letter-words (cdr word-list))))

   ;; Third do-again-test: when to skip element;
   ;;   recursively call shorter list with next-step expression
   (t (keep-three-letter-words (cdr word-list)))))

(keep-three-letter-words '(one two three four five six))
    ⇒ (one two six)

It goes without saying that you need not use nil as the test for
when to stop; and you can, of course, combine these patterns.


Recursion without Deferments




Let's consider again what happens with the triangle-recursively
function.  We will find that the intermediate calculations are
deferred until all can be done.
Here is the function definition:

(defun triangle-recursively (number)
  "Return the sum of the numbers 1 through NUMBER inclusive.
Uses recursion."
  (if (= number 1)                    ; do-again-test
      1                               ; then-part
    (+ number                         ; else-part
       (triangle-recursively          ; recursive call
        (1- number)))))               ; next-step-expression

What happens when we call this function with a argument of 7?
The first instance of the triangle-recursively function adds
the number 7 to the value returned by a second instance of
triangle-recursively, an instance that has been passed an
argument of 6.  That is to say, the first calculation is:

(+ 7 (triangle-recursively 6))

The first instance of triangle-recursively—you may want to
think of it as a little robot—cannot complete its job.  It must hand
off the calculation for (triangle-recursively 6) to a second
instance of the program, to a second robot.  This second individual is
completely different from the first one; it is, in the jargon, a
`different instantiation'.  Or, put another way, it is a different
robot.  It is the same model as the first; it calculates triangle
numbers recursively; but it has a different serial number.
And what does (triangle-recursively 6) return?  It returns the
number 6 added to the value returned by evaluating
triangle-recursively with an argument of 5.  Using the robot
metaphor, it asks yet another robot to help it.
Now the total is:

(+ 7 6 (triangle-recursively 5))

And what happens next?

(+ 7 6 5 (triangle-recursively 4))

Each time triangle-recursively is called, except for the last
time, it creates another instance of the program—another robot—and
asks it to make a calculation.
Eventually, the full addition is set up and performed:

(+ 7 6 5 4 3 2 1)

This design for the function defers the calculation of the first step
until the second can be done, and defers that until the third can be
done, and so on.  Each deferment means the computer must remember what
is being waited on.  This is not a problem when there are only a few
steps, as in this example.  But it can be a problem when there are
more steps.

No Deferment Solution




The solution to the problem of deferred operations is to write in a
manner that does not defer operations[12].  This requires
writing to a different pattern, often one that involves writing two
function definitions, an `initialization' function and a `helper'
function.
The `initialization' function sets up the job; the `helper' function
does the work.
Here are the two function definitions for adding up numbers.  They are
so simple, I find them hard to understand.

(defun triangle-initialization (number)
  "Return the sum of the numbers 1 through NUMBER inclusive.
This is the `initialization' component of a two function
duo that uses recursion."
  (triangle-recursive-helper 0 0 number))


(defun triangle-recursive-helper (sum counter number)
  "Return SUM, using COUNTER, through NUMBER inclusive.
This is the `helper' component of a two function duo
that uses recursion."
  (if (> counter number)
      sum
    (triangle-recursive-helper (+ sum counter)  ; sum
                               (1+ counter)     ; counter
                               number)))        ; number

Install both function definitions by evaluating them, then call
triangle-initialization with 2 rows:

(triangle-initialization 2)
    ⇒ 3

The `initialization' function calls the first instance of the `helper'
function with three arguments: zero, zero, and a number which is the
number of rows in the triangle.
The first two arguments passed to the `helper' function are
initialization values.  These values are changed when
triangle-recursive-helper invokes new instances.[13]
Let's see what happens when we have a triangle that has one row.  (This
triangle will have one pebble in it!)
triangle-initialization will call its helper with
the arguments 0 0 1.  That function will run the conditional
test whether (> counter number):

(> 0 1)

and find that the result is false, so it will invoke
the else-part of the if clause:

    (triangle-recursive-helper
     (+ sum counter)  ; sum plus counter ⇒ sum
     (1+ counter)     ; increment counter ⇒ counter
     number)          ; number stays the same

which will first compute:

(triangle-recursive-helper (+ 0 0)  ; sum
                           (1+ 0)   ; counter
                           1)       ; number
which is:

(triangle-recursive-helper 0 1 1)

Again, (> counter number) will be false, so again, the Lisp
interpreter will evaluate triangle-recursive-helper, creating a
new instance with new arguments.
This new instance will be;

    (triangle-recursive-helper
     (+ sum counter)  ; sum plus counter ⇒ sum
     (1+ counter)     ; increment counter ⇒ counter
     number)          ; number stays the same

which is:

(triangle-recursive-helper 1 2 1)

In this case, the (> counter number) test will be true!  So the
instance will return the value of the sum, which will be 1, as
expected.
Now, let's pass triangle-initialization an argument
of 2, to find out how many pebbles there are in a triangle with two rows.
That function calls (triangle-recursive-helper 0 0 2).
In stages, the instances called will be:

                          sum counter number
(triangle-recursive-helper 0    1       2)

(triangle-recursive-helper 1    2       2)

(triangle-recursive-helper 3    3       2)

When the last instance is called, the (> counter number) test
will be true, so the instance will return the value of sum,
which will be 3.
This kind of pattern helps when you are writing functions that can use
many resources in a computer.



[12] The phrase tail
recursive is used to describe such a process, one that uses
`constant space'.

[13] The
jargon is mildly confusing:  triangle-recursive-helper uses a
process that is iterative in a procedure that is recursive.  The
process is called iterative because the computer need only record the
three values, sum, counter, and number; the
procedure is recursive because the function `calls itself'.  On the
other hand, both the process and the procedure used by
triangle-recursively are called recursive.  The word
`recursive' has different meanings in the two contexts.



Looping Exercise



	Write a function similar to triangle in which each row has a
value which is the square of the row number.  Use a while loop.

	Write a function similar to triangle that multiplies instead of
adds the values.

	Rewrite these two functions recursively.  Rewrite these functions
using cond.

	Write a function for Texinfo mode that creates an index entry at the
beginning of a paragraph for every ‘@dfn’ within the paragraph.
(In a Texinfo file, ‘@dfn’ marks a definition.  This book is
written in Texinfo.)
Many of the functions you will need are described in two of the
previous chapters, Cutting and Storing Text, and Yanking Text Back.  If you use
forward-paragraph to put the index entry at the beginning of
the paragraph, you will have to use C-h f
(describe-function) to find out how to make the command go
backwards.
For more information, see




Chapter 12. Regular Expression Searches




Regular expression searches are used extensively in GNU Emacs.  The
two functions, forward-sentence and forward-paragraph,
illustrate these searches well.  They use regular expressions to find
where to move point.  The phrase `regular expression' is often written
as `regexp'.
Regular expression searches are described in See section ``Regular Expression Search'' in The GNU Emacs Manual, as well as in
See section ``Regular Expressions'' in The GNU Emacs Lisp Reference Manual.  In writing this chapter, I am presuming that you have at
least a mild acquaintance with them.  The major point to remember is
that regular expressions permit you to search for patterns as well as
for literal strings of characters.  For example, the code in
forward-sentence searches for the pattern of possible
characters that could mark the end of a sentence, and moves point to
that spot.
Before looking at the code for the forward-sentence function, it
is worth considering what the pattern that marks the end of a sentence
must be.  The pattern is discussed in the next section; following that
is a description of the regular expression search function,
re-search-forward.  The forward-sentence function
is described in the section following.  Finally, the
forward-paragraph function is described in the last section of
this chapter.  forward-paragraph is a complex function that
introduces several new features.
The Regular Expression for sentence-end




The symbol sentence-end is bound to the pattern that marks the
end of a sentence.  What should this regular expression be?
Clearly, a sentence may be ended by a period, a question mark, or an
exclamation mark.  Indeed, in English, only clauses that end with one
of those three characters should be considered the end of a sentence.
This means that the pattern should include the character set:

[.?!]

However, we do not want forward-sentence merely to jump to a
period, a question mark, or an exclamation mark, because such a character
might be used in the middle of a sentence.  A period, for example, is
used after abbreviations.  So other information is needed.
According to convention, you type two spaces after every sentence, but
only one space after a period, a question mark, or an exclamation mark in
the body of a sentence.  So a period, a question mark, or an exclamation
mark followed by two spaces is a good indicator of an end of sentence.
However, in a file, the two spaces may instead be a tab or the end of a
line.  This means that the regular expression should include these three
items as alternatives.
This group of alternatives will look like this:

\\($\\| \\|  \\)
       ^   ^^
      TAB  SPC

Here, ‘$’ indicates the end of the line, and I have pointed out
where the tab and two spaces are inserted in the expression.  Both are
inserted by putting the actual characters into the expression.
Two backslashes, ‘\\’, are required before the parentheses and
vertical bars: the first backslash quotes the following backslash in
Emacs; and the second indicates that the following character, the
parenthesis or the vertical bar, is special.
Also, a sentence may be followed by one or more carriage returns, like
this:

[
]*

Like tabs and spaces, a carriage return is inserted into a regular
expression by inserting it literally.  The asterisk indicates that the
RET is repeated zero or more times.
But a sentence end does not consist only of a period, a question mark or
an exclamation mark followed by appropriate space: a closing quotation
mark or a closing brace of some kind may precede the space.  Indeed more
than one such mark or brace may precede the space.  These require a
expression that looks like this:

[]\"')}]*

In this expression, the first ‘]’ is the first character in the
expression; the second character is ‘"’, which is preceded by a
‘\’ to tell Emacs the ‘"’ is not special.  The last
three characters are ‘'’, ‘)’, and ‘}’.
All this suggests what the regular expression pattern for matching the
end of a sentence should be; and, indeed, if we evaluate
sentence-end we find that it returns the following value:

sentence-end
     ⇒ "[.?!][]\"')}]*\\($\\|     \\|  \\)[
]*"

(Well, not in GNU Emacs 22; that is because of an effort to make the
process simpler and to handle more glyphs and languages.  When the
value of sentence-end is nil, then use the value defined
by the function sentence-end.  (Here is a use of the difference
between a value and a function in Emacs Lisp.)  The function returns a
value constructed from the variables sentence-end-base,
sentence-end-double-space, sentence-end-without-period,
and sentence-end-without-space.  The critical variable is
sentence-end-base; its global value is similar to the one
described above but it also contains two additional quotation marks.
These have differing degrees of curliness.  The
sentence-end-without-period variable, when true, tells Emacs
that a sentence may end without a period, such as text in Thai.)


The re-search-forward Function




The re-search-forward function is very like the
search-forward function.  (See The search-forward Function.)
re-search-forward searches for a regular expression.  If the
search is successful, it leaves point immediately after the last
character in the target.  If the search is backwards, it leaves point
just before the first character in the target.  You may tell
re-search-forward to return t for true.  (Moving point
is therefore a `side effect'.)
Like search-forward, the re-search-forward function takes
four arguments:
	The first argument is the regular expression that the function searches
for.  The regular expression will be a string between quotations marks.

	The optional second argument limits how far the function will search; it is a
bound, which is specified as a position in the buffer.

	The optional third argument specifies how the function responds to
failure: nil as the third argument causes the function to
signal an error (and print a message) when the search fails; any other
value causes it to return nil if the search fails and t
if the search succeeds.

	The optional fourth argument is the repeat count.  A negative repeat
count causes re-search-forward to search backwards.



The template for re-search-forward looks like this:

(re-search-forward "regular-expression"
                limit-of-search
                what-to-do-if-search-fails
                repeat-count)

The second, third, and fourth arguments are optional.  However, if you
want to pass a value to either or both of the last two arguments, you
must also pass a value to all the preceding arguments.  Otherwise, the
Lisp interpreter will mistake which argument you are passing the value
to.
In the forward-sentence function, the regular expression will be
the value of the variable sentence-end.  In simple form, that is:

"[.?!][]\"')}]*\\($\\|  \\|  \\)[
]*"

The limit of the search will be the end of the paragraph (since a
sentence cannot go beyond a paragraph).  If the search fails, the
function will return nil; and the repeat count will be provided
by the argument to the forward-sentence function.

forward-sentence




The command to move the cursor forward a sentence is a straightforward
illustration of how to use regular expression searches in Emacs Lisp.
Indeed, the function looks longer and more complicated than it is; this
is because the function is designed to go backwards as well as forwards;
and, optionally, over more than one sentence.  The function is usually
bound to the key command M-e.
Complete forward-sentence function definition



Here is the code for forward-sentence:

(defun forward-sentence (&amp;optional arg)
  "Move forward to next `sentence-end'.  With argument, repeat.
With negative argument, move backward repeatedly to `sentence-beginning'.

The variable `sentence-end' is a regular expression that matches ends of
sentences.  Also, every paragraph boundary terminates sentences as well."
       (interactive "p")
  (or arg (setq arg 1))
  (let ((opoint (point))
        (sentence-end (sentence-end)))
    (while (< arg 0)
      (let ((pos (point))
            (par-beg (save-excursion (start-of-paragraph-text) (point))))
       (if (and (re-search-backward sentence-end par-beg t)
                (or (< (match-end 0) pos)
                    (re-search-backward sentence-end par-beg t)))
           (goto-char (match-end 0))
         (goto-char par-beg)))
      (setq arg (1+ arg)))
    (while (> arg 0)
      (let ((par-end (save-excursion (end-of-paragraph-text) (point))))
       (if (re-search-forward sentence-end par-end t)
           (skip-chars-backward " \t\n")
         (goto-char par-end)))
      (setq arg (1- arg)))
    (constrain-to-field nil opoint t)))

The function looks long at first sight and it is best to look at its
skeleton first, and then its muscle.  The way to see the skeleton is to
look at the expressions that start in the left-most columns:

(defun forward-sentence (&amp;optional arg)
  "documentation…"
  (interactive "p")
  (or arg (setq arg 1))
  (let ((opoint (point)) (sentence-end (sentence-end)))
    (while (< arg 0)
      (let ((pos (point))
            (par-beg (save-excursion (start-of-paragraph-text) (point))))
       rest-of-body-of-while-loop-when-going-backwards
    (while (> arg 0)
      (let ((par-end (save-excursion (end-of-paragraph-text) (point))))
       rest-of-body-of-while-loop-when-going-forwards
    handle-forms-and-equivalent

This looks much simpler!  The function definition consists of
documentation, an interactive expression, an or
expression, a let expression, and while loops.
Let's look at each of these parts in turn.
We note that the documentation is thorough and understandable.
The function has an interactive "p" declaration.  This means
that the processed prefix argument, if any, is passed to the
function as its argument.  (This will be a number.)  If the function
is not passed an argument (it is optional) then the argument
arg will be bound to 1.
When forward-sentence is called non-interactively without an
argument, arg is bound to nil.  The or expression
handles this.  What it does is either leave the value of arg as
it is, but only if arg is bound to a value; or it sets the
value of arg to 1, in the case when arg is bound to
nil.
Next is a let.  That specifies the values of two local
variables, point and sentence-end.  The local value of
point, from before the search, is used in the
constrain-to-field function which handles forms and
equivalents.  The sentence-end variable is set by the
sentence-end function.

The while loops



Two while loops follow.  The first while has a
true-or-false-test that tests true if the prefix argument for
forward-sentence is a negative number.  This is for going
backwards.  The body of this loop is similar to the body of the second
while clause, but it is not exactly the same.  We will skip
this while loop and concentrate on the second while
loop.
The second while loop is for moving point forward.  Its skeleton
looks like this:

(while (> arg 0)            ; true-or-false-test
  (let varlist
    (if (true-or-false-test)
        then-part
      else-part
  (setq arg (1- arg))))     ; while loop decrementer
     
The while loop is of the decrementing kind.
(See A Loop with a Decrementing Counter.)  It
has a true-or-false-test that tests true so long as the counter (in
this case, the variable arg) is greater than zero; and it has a
decrementer that subtracts 1 from the value of the counter every time
the loop repeats.
If no prefix argument is given to forward-sentence, which is
the most common way the command is used, this while loop will
run once, since the value of arg will be 1.
The body of the while loop consists of a let expression,
which creates and binds a local variable, and has, as its body, an
if expression.
The body of the while loop looks like this:

(let ((par-end
       (save-excursion (end-of-paragraph-text) (point))))
  (if (re-search-forward sentence-end par-end t)
      (skip-chars-backward " \t\n")
    (goto-char par-end)))

The let expression creates and binds the local variable
par-end.  As we shall see, this local variable is designed to
provide a bound or limit to the regular expression search.  If the
search fails to find a proper sentence ending in the paragraph, it will
stop on reaching the end of the paragraph.
But first, let us examine how par-end is bound to the value of
the end of the paragraph.  What happens is that the let sets the
value of par-end to the value returned when the Lisp interpreter
evaluates the expression

(save-excursion (end-of-paragraph-text) (point))

In this expression, (end-of-paragraph-text) moves point to the
end of the paragraph, (point) returns the value of point, and then
save-excursion restores point to its original position.  Thus,
the let binds par-end to the value returned by the
save-excursion expression, which is the position of the end of
the paragraph.  (The end-of-paragraph-text function uses
forward-paragraph, which we will discuss shortly.)
Emacs next evaluates the body of the let, which is an if
expression that looks like this:

(if (re-search-forward sentence-end par-end t) ; if-part
    (skip-chars-backward " \t\n")              ; then-part
  (goto-char par-end)))                        ; else-part

The if tests whether its first argument is true and if so,
evaluates its then-part; otherwise, the Emacs Lisp interpreter
evaluates the else-part.  The true-or-false-test of the if
expression is the regular expression search.
It may seem odd to have what looks like the `real work' of
the forward-sentence function buried here, but this is a common
way this kind of operation is carried out in Lisp.

The regular expression search



The re-search-forward function searches for the end of the
sentence, that is, for the pattern defined by the sentence-end
regular expression.  If the pattern is found—if the end of the sentence is
found—then the re-search-forward function does two things:
	The re-search-forward function carries out a side effect, which
is to move point to the end of the occurrence found.

	The re-search-forward function returns a value of true.  This is
the value received by the if, and means that the search was
successful.



The side effect, the movement of point, is completed before the
if function is handed the value returned by the successful
conclusion of the search.
When the if function receives the value of true from a successful
call to re-search-forward, the if evaluates the then-part,
which is the expression (skip-chars-backward " \t\n").  This
expression moves backwards over any blank spaces, tabs or carriage
returns until a printed character is found and then leaves point after
the character.  Since point has already been moved to the end of the
pattern that marks the end of the sentence, this action leaves point
right after the closing printed character of the sentence, which is
usually a period.
On the other hand, if the re-search-forward function fails to
find a pattern marking the end of the sentence, the function returns
false.  The false then causes the if to evaluate its third
argument, which is (goto-char par-end):  it moves point to the
end of the paragraph.
(And if the text is in a form or equivalent, and point may not move
fully, then the constrain-to-field function comes into play.)
Regular expression searches are exceptionally useful and the pattern
illustrated by re-search-forward, in which the search is the
test of an if expression, is handy.  You will see or write code
incorporating this pattern often.


forward-paragraph: a Goldmine of Functions




The forward-paragraph function moves point forward to the end
of the paragraph.  It is usually bound to M-} and makes use of a
number of functions that are important in themselves, including
let*, match-beginning, and looking-at.
The function definition for forward-paragraph is considerably
longer than the function definition for forward-sentence
because it works with a paragraph, each line of which may begin with a
fill prefix.
A fill prefix consists of a string of characters that are repeated at
the beginning of each line.  For example, in Lisp code, it is a
convention to start each line of a paragraph-long comment with
‘;;; ’.  In Text mode, four blank spaces make up another common
fill prefix, creating an indented paragraph.  (See See section ``Fill Prefix'' in The GNU Emacs Manual, for more information about fill
prefixes.)
The existence of a fill prefix means that in addition to being able to
find the end of a paragraph whose lines begin on the left-most
column, the forward-paragraph function must be able to find the
end of a paragraph when all or many of the lines in the buffer begin
with the fill prefix.
Moreover, it is sometimes practical to ignore a fill prefix that
exists, especially when blank lines separate paragraphs.
This is an added complication.
Shortened forward-paragraph function definition



Rather than print all of the forward-paragraph function, we
will only print parts of it.  Read without preparation, the function
can be daunting!
In outline, the function looks like this:

(defun forward-paragraph (&amp;optional arg)
  "documentation…"
  (interactive "p")
  (or arg (setq arg 1))
  (let*
      varlist
    (while (and (< arg 0) (not (bobp)))     ; backward-moving-code
      …
    (while (and (> arg 0) (not (eobp)))     ; forward-moving-code
      …
     
The first parts of the function are routine: the function's argument
list consists of one optional argument.  Documentation follows.
The lower case ‘p’ in the interactive declaration means
that the processed prefix argument, if any, is passed to the function.
This will be a number, and is the repeat count of how many paragraphs
point will move.  The or expression in the next line handles
the common case when no argument is passed to the function, which occurs
if the function is called from other code rather than interactively.
This case was described earlier.  (See The forward-sentence function.)  Now we reach the end of the
familiar part of this function.

The let* expression



The next line of the forward-paragraph function begins a
let* expression.  This is a different than let.  The
symbol is let* not let.
The let* special form is like let except that Emacs sets
each variable in sequence, one after another, and variables in the
latter part of the varlist can make use of the values to which Emacs
set variables in the earlier part of the varlist.
(save-excursion in append-to-buffer.)
In the let* expression in this function, Emacs binds a total of
seven variables:  opoint, fill-prefix-regexp,
parstart, parsep, sp-parstart, start, and
found-start.
The variable parsep appears twice, first, to remove instances
of ‘^’, and second, to handle fill prefixes.
The variable opoint is just the value of point.  As you
can guess, it is used in a constrain-to-field expression, just
as in forward-sentence.
The variable fill-prefix-regexp is set to the value returned by
evaluating the following list:

(and fill-prefix
     (not (equal fill-prefix ""))
     (not paragraph-ignore-fill-prefix)
     (regexp-quote fill-prefix))
     
This is an expression whose first element is the and special form.
As we learned earlier (see The kill-new function), the and special form evaluates each of its
arguments until one of the arguments returns a value of nil, in
which case the and expression returns nil; however, if
none of the arguments returns a value of nil, the value
resulting from evaluating the last argument is returned.  (Since such
a value is not nil, it is considered true in Lisp.)  In other
words, an and expression returns a true value only if all its
arguments are true.

In this case, the variable fill-prefix-regexp is bound to a
non-nil value only if the following four expressions produce a
true (i.e., a non-nil) value when they are evaluated; otherwise,
fill-prefix-regexp is bound to nil.
	fill-prefix
	When this variable is evaluated, the value of the fill prefix, if any,
is returned.  If there is no fill prefix, this variable returns
nil.

	(not (equal fill-prefix "")
	This expression checks whether an existing fill prefix is an empty
string, that is, a string with no characters in it.  An empty string is
not a useful fill prefix.

	(not paragraph-ignore-fill-prefix)
	This expression returns nil if the variable
paragraph-ignore-fill-prefix has been turned on by being set to a
true value such as t.

	(regexp-quote fill-prefix)
	This is the last argument to the and special form.  If all the
arguments to the and are true, the value resulting from
evaluating this expression will be returned by the and expression
and bound to the variable fill-prefix-regexp,



The result of evaluating this and expression successfully is that
fill-prefix-regexp will be bound to the value of
fill-prefix as modified by the regexp-quote function.
What regexp-quote does is read a string and return a regular
expression that will exactly match the string and match nothing else.
This means that fill-prefix-regexp will be set to a value that
will exactly match the fill prefix if the fill prefix exists.
Otherwise, the variable will be set to nil.
The next two local variables in the let* expression are
designed to remove instances of ‘^’ from parstart and
parsep, the local variables which indicate the paragraph start
and the paragraph separator.  The next expression sets parsep
again.  That is to handle fill prefixes.
This is the setting that requires the definition call let*
rather than let.  The true-or-false-test for the if
depends on whether the variable fill-prefix-regexp evaluates to
nil or some other value.
If fill-prefix-regexp does not have a value, Emacs evaluates
the else-part of the if expression and binds parsep to
its local value.  (parsep is a regular expression that matches
what separates paragraphs.)
But if fill-prefix-regexp does have a value, Emacs evaluates
the then-part of the if expression and binds parsep to a
regular expression that includes the fill-prefix-regexp as part
of the pattern.
Specifically, parsep is set to the original value of the
paragraph separate regular expression concatenated with an alternative
expression that consists of the fill-prefix-regexp followed by
optional whitespace to the end of the line.  The whitespace is defined
by "[ \t]*$".)  The ‘\\|’ defines this portion of the
regexp as an alternative to parsep.
According to a comment in the code, the next local variable,
sp-parstart, is used for searching, and then the final two,
start and found-start, are set to nil.
Now we get into the body of the let*.  The first part of the body
of the let* deals with the case when the function is given a
negative argument and is therefore moving backwards.  We will skip this
section.

The forward motion while loop



The second part of the body of the let* deals with forward
motion.  It is a while loop that repeats itself so long as the
value of arg is greater than zero.  In the most common use of
the function, the value of the argument is 1, so the body of the
while loop is evaluated exactly once, and the cursor moves
forward one paragraph.
This part handles three situations: when point is between paragraphs,
when there is a fill prefix and when there is no fill prefix.
The while loop looks like this:

;; going forwards and not at the end of the buffer
(while (and (> arg 0) (not (eobp)))

  ;; between paragraphs
  ;; Move forward over separator lines...
  (while (and (not (eobp))
              (progn (move-to-left-margin) (not (eobp)))
              (looking-at parsep))
    (forward-line 1))
  ;;  This decrements the loop
  (unless (eobp) (setq arg (1- arg)))
  ;; ... and one more line.
  (forward-line 1)
     
  (if fill-prefix-regexp
      ;; There is a fill prefix; it overrides parstart;
      ;; we go forward line by line
      (while (and (not (eobp))
                  (progn (move-to-left-margin) (not (eobp)))
                  (not (looking-at parsep))
                  (looking-at fill-prefix-regexp))
        (forward-line 1))

    ;; There is no fill prefix;
    ;; we go forward character by character
    (while (and (re-search-forward sp-parstart nil 1)
                (progn (setq start (match-beginning 0))
                       (goto-char start)
                       (not (eobp)))
                (progn (move-to-left-margin)
                       (not (looking-at parsep)))
                (or (not (looking-at parstart))
                    (and use-hard-newlines
                         (not (get-text-property (1- start) 'hard)))))
      (forward-char 1))

    ;; and if there is no fill prefix and if we are not at the end,
    ;;     go to whatever was found in the regular expression search
    ;;     for sp-parstart
    (if (< (point) (point-max))
        (goto-char start))))

We can see that this is a decrementing counter while loop,
using the expression (setq arg (1- arg)) as the decrementer.
That expression is not far from the while, but is hidden in
another Lisp macro, an unless macro.  Unless we are at the end
of the buffer — that is what the eobp function determines; it
is an abbreviation of ‘End Of Buffer P’ — we decrease the value
of arg by one.
(If we are at the end of the buffer, we cannot go forward any more and
the next loop of the while expression will test false since the
test is an and with (not (eobp)).  The not
function means exactly as you expect; it is another name for
null, a function that returns true when its argument is false.)
Interestingly, the loop count is not decremented until we leave the
space between paragraphs, unless we come to the end of buffer or stop
seeing the local value of the paragraph separator.
That second while also has a (move-to-left-margin)
expression.  The function is self-explanatory.  It is inside a
progn expression and not the last element of its body, so it is
only invoked for its side effect, which is to move point to the left
margin of the current line.
The looking-at function is also self-explanatory; it returns
true if the text after point matches the regular expression given as
its argument.
The rest of the body of the loop looks difficult at first, but makes
sense as you come to understand it.
First consider what happens if there is a fill prefix:

  (if fill-prefix-regexp
      ;; There is a fill prefix; it overrides parstart;
      ;; we go forward line by line
      (while (and (not (eobp))
                  (progn (move-to-left-margin) (not (eobp)))
                  (not (looking-at parsep))
                  (looking-at fill-prefix-regexp))
        (forward-line 1))

This expression moves point forward line by line so long
as four conditions are true:
	Point is not at the end of the buffer.

	We can move to the left margin of the text and are
not at the end of the buffer.

	The text following point does not separate paragraphs.

	The pattern following point is the fill prefix regular expression.



The last condition may be puzzling, until you remember that point was
moved to the beginning of the line early in the forward-paragraph
function.  This means that if the text has a fill prefix, the
looking-at function will see it.
Consider what happens when there is no fill prefix.

    (while (and (re-search-forward sp-parstart nil 1)
                (progn (setq start (match-beginning 0))
                       (goto-char start)
                       (not (eobp)))
                (progn (move-to-left-margin)
                       (not (looking-at parsep)))
                (or (not (looking-at parstart))
                    (and use-hard-newlines
                         (not (get-text-property (1- start) 'hard)))))
      (forward-char 1))

This while loop has us searching forward for
sp-parstart, which is the combination of possible whitespace
with a the local value of the start of a paragraph or of a paragraph
separator.  (The latter two are within an expression starting
\(?: so that they are not referenced by the
match-beginning function.)
The two expressions,

(setq start (match-beginning 0))
(goto-char start)

mean go to the start of the text matched by the regular expression
search.
The (match-beginning 0) expression is new.  It returns a number
specifying the location of the start of the text that was matched by
the last search.
The match-beginning function is used here because of a
characteristic of a forward search: a successful forward search,
regardless of whether it is a plain search or a regular expression
search, moves point to the end of the text that is found.  In this
case, a successful search moves point to the end of the pattern for
sp-parstart.
However, we want to put point at the end of the current paragraph, not
somewhere else.  Indeed, since the search possibly includes the
paragraph separator, point may end up at the beginning of the next one
unless we use an expression that includes match-beginning.
When given an argument of 0, match-beginning returns the
position that is the start of the text matched by the most recent
search.  In this case, the most recent search looks for
sp-parstart.  The (match-beginning 0) expression returns
the beginning position of that pattern, rather than the end position
of that pattern.
(Incidentally, when passed a positive number as an argument, the
match-beginning function returns the location of point at that
parenthesized expression in the last search unless that parenthesized
expression begins with \(?:.  I don't know why \(?:
appears here since the argument is 0.)
The last expression when there is no fill prefix is

(if (< (point) (point-max))
    (goto-char start))))

This says that if there is no fill prefix and if we are not at the
end, point should move to the beginning of whatever was found by the
regular expression search for sp-parstart.
The full definition for the forward-paragraph function not only
includes code for going forwards, but also code for going backwards.
If you are reading this inside of GNU Emacs and you want to see the
whole function, you can type C-h f (describe-function)
and the name of the function.  This gives you the function
documentation and the name of the library containing the function's
source.  Place point over the name of the library and press the RET
key; you will be taken directly to the source.  (Be sure to install
your sources!  Without them, you are like a person who tries to drive
a car with his eyes shut!)


Create Your Own TAGS File




Besides C-h f (describe-function), another way to see the
source of a function is to type M-. (find-tag) and the
name of the function when prompted for it.  This is a good habit to
get into.  The M-. (find-tag) command takes you directly
to the source for a function, variable, or node.  The function depends
on tags tables to tell it where to go.
If the find-tag function first asks you for the name of a
TAGS table, give it the name of a TAGS file such as
/usr/local/src/emacs/src/TAGS.  (The exact path to your
TAGS file depends on how your copy of Emacs was installed.  I
just told you the location that provides both my C and my Emacs Lisp
sources.)
You can also create your own TAGS file for directories that
lack one.
You often need to build and install tags tables yourself.  They are
not built automatically.  A tags table is called a TAGS file;
the name is in upper case letters.
You can create a TAGS file by calling the etags program
that comes as a part of the Emacs distribution.  Usually, etags
is compiled and installed when Emacs is built.  (etags is not
an Emacs Lisp function or a part of Emacs; it is a C program.)
To create a TAGS file, first switch to the directory in which
you want to create the file.  In Emacs you can do this with the
M-x cd command, or by visiting a file in the directory, or by
listing the directory with C-x d (dired).  Then run the
compile command, with etags *.el as the command to execute

M-x compile RET etags *.el RET

to create a TAGS file for Emacs Lisp.
For example, if you have a large number of files in your
~/emacs directory, as I do—I have 137 .el files in it,
of which I load 12—you can create a TAGS file for the Emacs
Lisp files in that directory.
The etags program takes all the usual shell `wildcards'.  For
example, if you have two directories for which you want a single
TAGS file, type etags *.el ../elisp/*.el, where
../elisp/ is the second directory:

M-x compile RET etags *.el ../elisp/*.el RET

Type

M-x compile RET etags --help RET

to see a list of the options accepted by etags as well as a
list of supported languages.
The etags program handles more than 20 languages, including
Emacs Lisp, Common Lisp, Scheme, C, C++, Ada, Fortran, HTML, Java,
LaTeX, Pascal, Perl, Postscript, Python, TeX, Texinfo, makefiles, and
most assemblers.  The program has no switches for specifying the
language; it recognizes the language in an input file according to its
file name and contents.
etags is very helpful when you are writing code yourself and
want to refer back to functions you have already written.  Just run
etags again at intervals as you write new functions, so they
become part of the TAGS file.
If you think an appropriate TAGS file already exists for what
you want, but do not know where it is, you can use the locate
program to attempt to find it.
Type M-x locate RET TAGS RET and Emacs will list
for you the full path names of all your TAGS files.  On my
system, this command lists 34 TAGS files.  On the other hand, a
`plain vanilla' system I recently installed did not contain any
TAGS files.
If the tags table you want has been created, you can use the M-x
visit-tags-table command to specify it.  Otherwise, you will need to
create the tag table yourself and then use M-x
visit-tags-table.
Building Tags in the Emacs sources

The GNU Emacs sources come with a Makefile that contains a
sophisticated etags command that creates, collects, and merges
tags tables from all over the Emacs sources and puts the information
into one TAGS file in the src/ directory. (The
src/ directory is below the top level of your Emacs directory.)
To build this TAGS file, go to the top level of your Emacs
source directory and run the compile command make tags:

M-x compile RET make tags RET

(The make tags command works well with the GNU Emacs sources,
as well as with some other source packages.)
For more information, see See section ``Tag Tables'' in The GNU Emacs Manual.

Review



Here is a brief summary of some recently introduced functions.
	while
	Repeatedly evaluate the body of the expression so long as the first
element of the body tests true.  Then return nil.  (The
expression is evaluated only for its side effects.)
For example:

(let ((foo 2))
  (while (> foo 0)
    (insert (format "foo is %d.\n" foo))
    (setq foo (1- foo))))

     ⇒      foo is 2.
             foo is 1.
             nil

(The insert function inserts its arguments at point; the
format function returns a string formatted from its arguments
the way message formats its arguments; \n produces a new
line.)

	re-search-forward
	Search for a pattern, and if the pattern is found, move point to rest
just after it.
Takes four arguments, like search-forward:
	A regular expression that specifies the pattern to search for.
(Remember to put quotation marks around this argument!)

	Optionally, the limit of the search.

	Optionally, what to do if the search fails, return nil or an
error message.

	Optionally, how many times to repeat the search; if negative, the
search goes backwards.




	let*
	Bind some variables locally to particular values,
and then evaluate the remaining arguments, returning the value of the
last one.  While binding the local variables, use the local values of
variables bound earlier, if any.
For example:

(let* ((foo 7)
      (bar (* 3 foo)))
  (message "`bar' is %d." bar))
     ⇒ `bar' is 21.


	match-beginning
	Return the position of the start of the text found by the last regular
expression search.

	looking-at
	Return t for true if the text after point matches the argument,
which should be a regular expression.

	eobp
	Return t for true if point is at the end of the accessible part
of a buffer.  The end of the accessible part is the end of the buffer
if the buffer is not narrowed; it is the end of the narrowed part if
the buffer is narrowed.




Exercises with re-search-forward



	Write a function to search for a regular expression that matches two
or more blank lines in sequence.

	Write a function to search for duplicated words, such as `the the'.
See See section ``Syntax of Regular Expressions'' in The GNU Emacs Manual, for information on how to write a regexp (a regular
expression) to match a string that is composed of two identical
halves.  You can devise several regexps; some are better than others.
The function I use is described in an appendix, along with several
regexps.  See the-the Duplicated Words Function.




Chapter 13. Counting: Repetition and Regexps




Repetition and regular expression searches are powerful tools that you
often use when you write code in Emacs Lisp.  This chapter illustrates
the use of regular expression searches through the construction of
word count commands using while loops and recursion.
Counting words



The standard Emacs distribution contains a function for counting the
number of lines within a region.  However, there is no corresponding
function for counting words.
Certain types of writing ask you to count words.  Thus, if you write
an essay, you may be limited to 800 words; if you write a novel, you
may discipline yourself to write 1000 words a day.  It seems odd to me
that Emacs lacks a word count command.  Perhaps people use Emacs
mostly for code or types of documentation that do not require word
counts; or perhaps they restrict themselves to the operating system
word count command, wc.  Alternatively, people may follow
the publishers' convention and compute a word count by dividing the
number of characters in a document by five.  In any event, here are
commands to count words.


The count-words-region Function




A word count command could count words in a line, paragraph, region,
or buffer.  What should the command cover?  You could design the
command to count the number of words in a complete buffer.  However,
the Emacs tradition encourages flexibility—you may want to count
words in just a section, rather than all of a buffer.  So it makes
more sense to design the command to count the number of words in a
region.  Once you have a count-words-region command, you can,
if you wish, count words in a whole buffer by marking it with
C-x h (mark-whole-buffer).
Clearly, counting words is a repetitive act: starting from the
beginning of the region, you count the first word, then the second
word, then the third word, and so on, until you reach the end of the
region.  This means that word counting is ideally suited to recursion
or to a while loop.
Designing count-words-region



First, we will implement the word count command with a while
loop, then with recursion.  The command will, of course, be
interactive.
The template for an interactive function definition is, as always:

(defun name-of-function (argument-list)
  "documentation…"
  (interactive-expression…)
  body…)
     
What we need to do is fill in the slots.
The name of the function should be self-explanatory and similar to the
existing count-lines-region name.  This makes the name easier
to remember.  count-words-region is a good choice.
The function counts words within a region.  This means that the
argument list must contain symbols that are bound to the two
positions, the beginning and end of the region.  These two positions
can be called ‘beginning’ and ‘end’ respectively.  The first
line of the documentation should be a single sentence, since that is
all that is printed as documentation by a command such as
apropos.  The interactive expression will be of the form
‘(interactive "r")’, since that will cause Emacs to pass the
beginning and end of the region to the function's argument list.  All
this is routine.
The body of the function needs to be written to do three tasks:
first, to set up conditions under which the while loop can
count words, second, to run the while loop, and third, to send
a message to the user.
When a user calls count-words-region, point may be at the
beginning or the end of the region.  However, the counting process
must start at the beginning of the region.  This means we will want
to put point there if it is not already there.  Executing
(goto-char beginning) ensures this.  Of course, we will want to
return point to its expected position when the function finishes its
work.  For this reason, the body must be enclosed in a
save-excursion expression.
The central part of the body of the function consists of a
while loop in which one expression jumps point forward word by
word, and another expression counts those jumps.  The true-or-false-test
of the while loop should test true so long as point should jump
forward, and false when point is at the end of the region.
We could use (forward-word 1) as the expression for moving point
forward word by word, but it is easier to see what Emacs identifies as a
`word' if we use a regular expression search.
A regular expression search that finds the pattern for which it is
searching leaves point after the last character matched.  This means
that a succession of successful word searches will move point forward
word by word.
As a practical matter, we want the regular expression search to jump
over whitespace and punctuation between words as well as over the
words themselves.  A regexp that refuses to jump over interword
whitespace would never jump more than one word!  This means that
the regexp should include the whitespace and punctuation that follows
a word, if any, as well as the word itself.  (A word may end a buffer
and not have any following whitespace or punctuation, so that part of
the regexp must be optional.)
Thus, what we want for the regexp is a pattern defining one or more
word constituent characters followed, optionally, by one or more
characters that are not word constituents.  The regular expression for
this is:

\w+\W*

The buffer's syntax table determines which characters are and are not
word constituents.  (See What Constitutes a Word or Symbol?, for more about syntax.  Also, see See section ``The Syntax Table'' in The GNU Emacs Manual, and See section ``Syntax Tables'' in The GNU Emacs Lisp Reference Manual.)
The search expression looks like this:

(re-search-forward "\\w+\\W*")

(Note that paired backslashes precede the ‘w’ and ‘W’.  A
single backslash has special meaning to the Emacs Lisp interpreter.
It indicates that the following character is interpreted differently
than usual.  For example, the two characters, ‘\n’, stand for
‘newline’, rather than for a backslash followed by ‘n’.  Two
backslashes in a row stand for an ordinary, `unspecial' backslash, so
Emacs Lisp interpreter ends of seeing a single backslash followed by a
letter.  So it discovers the letter is special.)
We need a counter to count how many words there are; this variable
must first be set to 0 and then incremented each time Emacs goes
around the while loop.  The incrementing expression is simply:

(setq count (1+ count))

Finally, we want to tell the user how many words there are in the
region.  The message function is intended for presenting this
kind of information to the user.  The message has to be phrased so
that it reads properly regardless of how many words there are in the
region: we don't want to say that “there are 1 words in the region”.
The conflict between singular and plural is ungrammatical.  We can
solve this problem by using a conditional expression that evaluates
different messages depending on the number of words in the region.
There are three possibilities: no words in the region, one word in the
region, and more than one word.  This means that the cond
special form is appropriate.
All this leads to the following function definition:

;;; First version; has bugs!
(defun count-words-region (beginning end)
  "Print number of words in the region.
Words are defined as at least one word-constituent
character followed by at least one character that
is not a word-constituent.  The buffer's syntax
table determines which characters these are."
  (interactive "r")
  (message "Counting words in region ... ")

;;; 1. Set up appropriate conditions.
  (save-excursion
    (goto-char beginning)
    (let ((count 0))

;;; 2. Run the while loop.
      (while (< (point) end)
        (re-search-forward "\\w+\\W*")
        (setq count (1+ count)))

;;; 3. Send a message to the user.
      (cond ((zerop count)
             (message
              "The region does NOT have any words."))
            ((= 1 count)
             (message
              "The region has 1 word."))
            (t
             (message
              "The region has %d words." count))))))

As written, the function works, but not in all circumstances.

The Whitespace Bug in count-words-region



The count-words-region command described in the preceding
section has two bugs, or rather, one bug with two manifestations.
First, if you mark a region containing only whitespace in the middle
of some text, the count-words-region command tells you that the
region contains one word!  Second, if you mark a region containing
only whitespace at the end of the buffer or the accessible portion of
a narrowed buffer, the command displays an error message that looks
like this:

Search failed: "\\w+\\W*"

If you are reading this in Info in GNU Emacs, you can test for these
bugs yourself.
First, evaluate the function in the usual manner to install it.
If you wish, you can also install this keybinding by evaluating it:

(global-set-key "\C-c=" 'count-words-region)

To conduct the first test, set mark and point to the beginning and end
of the following line and then type C-c = (or M-x
count-words-region if you have not bound C-c =):

    one   two  three

Emacs will tell you, correctly, that the region has three words.
Repeat the test, but place mark at the beginning of the line and place
point just before the word ‘one’.  Again type the command
C-c = (or M-x count-words-region).  Emacs should tell you
that the region has no words, since it is composed only of the
whitespace at the beginning of the line.  But instead Emacs tells you
that the region has one word!
For the third test, copy the sample line to the end of the
*scratch* buffer and then type several spaces at the end of the
line.  Place mark right after the word ‘three’ and point at the
end of line.  (The end of the line will be the end of the buffer.)
Type C-c = (or M-x count-words-region) as you did before.
Again, Emacs should tell you that the region has no words, since it is
composed only of the whitespace at the end of the line.  Instead,
Emacs displays an error message saying ‘Search failed’.
The two bugs stem from the same problem.
Consider the first manifestation of the bug, in which the command
tells you that the whitespace at the beginning of the line contains
one word.  What happens is this: The M-x count-words-region
command moves point to the beginning of the region.  The while
tests whether the value of point is smaller than the value of
end, which it is.  Consequently, the regular expression search
looks for and finds the first word.  It leaves point after the word.
count is set to one.  The while loop repeats; but this
time the value of point is larger than the value of end, the
loop is exited; and the function displays a message saying the number
of words in the region is one.  In brief, the regular expression
search looks for and finds the word even though it is outside
the marked region.
In the second manifestation of the bug, the region is whitespace at
the end of the buffer.  Emacs says ‘Search failed’.  What happens
is that the true-or-false-test in the while loop tests true, so
the search expression is executed.  But since there are no more words
in the buffer, the search fails.
In both manifestations of the bug, the search extends or attempts to
extend outside of the region.
The solution is to limit the search to the region—this is a fairly
simple action, but as you may have come to expect, it is not quite as
simple as you might think.
As we have seen, the re-search-forward function takes a search
pattern as its first argument.  But in addition to this first,
mandatory argument, it accepts three optional arguments.  The optional
second argument bounds the search.  The optional third argument, if
t, causes the function to return nil rather than signal
an error if the search fails.  The optional fourth argument is a
repeat count.  (In Emacs, you can see a function's documentation by
typing C-h f, the name of the function, and then RET.)
In the count-words-region definition, the value of the end of
the region is held by the variable end which is passed as an
argument to the function.  Thus, we can add end as an argument
to the regular expression search expression:

(re-search-forward "\\w+\\W*" end)

However, if you make only this change to the count-words-region
definition and then test the new version of the definition on a
stretch of whitespace, you will receive an error message saying
‘Search failed’.
What happens is this: the search is limited to the region, and fails
as you expect because there are no word-constituent characters in the
region.  Since it fails, we receive an error message.  But we do not
want to receive an error message in this case; we want to receive the
message that "The region does NOT have any words."
The solution to this problem is to provide re-search-forward
with a third argument of t, which causes the function to return
nil rather than signal an error if the search fails.
However, if you make this change and try it, you will see the message
“Counting words in region ... ” and … you will keep on seeing
that message …, until you type C-g (keyboard-quit).
Here is what happens: the search is limited to the region, as before,
and it fails because there are no word-constituent characters in the
region, as expected.  Consequently, the re-search-forward
expression returns nil.  It does nothing else.  In particular,
it does not move point, which it does as a side effect if it finds the
search target.  After the re-search-forward expression returns
nil, the next expression in the while loop is evaluated.
This expression increments the count.  Then the loop repeats.  The
true-or-false-test tests true because the value of point is still less
than the value of end, since the re-search-forward expression
did not move point. … and the cycle repeats …
The count-words-region definition requires yet another
modification, to cause the true-or-false-test of the while loop
to test false if the search fails.  Put another way, there are two
conditions that must be satisfied in the true-or-false-test before the
word count variable is incremented: point must still be within the
region and the search expression must have found a word to count.
Since both the first condition and the second condition must be true
together, the two expressions, the region test and the search
expression, can be joined with an and special form and embedded in
the while loop as the true-or-false-test, like this:

(and (< (point) end) (re-search-forward "\\w+\\W*" end t))

The re-search-forward expression returns t if the search
succeeds and as a side effect moves point.  Consequently, as words are
found, point is moved through the region.  When the search expression
fails to find another word, or when point reaches the end of the
region, the true-or-false-test tests false, the while loop
exits, and the count-words-region function displays one or
other of its messages.
After incorporating these final changes, the count-words-region
works without bugs (or at least, without bugs that I have found!).
Here is what it looks like:

;;; Final version: while
(defun count-words-region (beginning end)
  "Print number of words in the region."
  (interactive "r")
  (message "Counting words in region ... ")

;;; 1. Set up appropriate conditions.
  (save-excursion
    (let ((count 0))
      (goto-char beginning)

;;; 2. Run the while loop.
      (while (and (< (point) end)
                  (re-search-forward "\\w+\\W*" end t))
        (setq count (1+ count)))

;;; 3. Send a message to the user.
      (cond ((zerop count)
             (message
              "The region does NOT have any words."))
            ((= 1 count)
             (message
              "The region has 1 word."))
            (t
             (message
              "The region has %d words." count))))))



Count Words Recursively




You can write the function for counting words recursively as well as
with a while loop.  Let's see how this is done.
First, we need to recognize that the count-words-region
function has three jobs: it sets up the appropriate conditions for
counting to occur; it counts the words in the region; and it sends a
message to the user telling how many words there are.
If we write a single recursive function to do everything, we will
receive a message for every recursive call.  If the region contains 13
words, we will receive thirteen messages, one right after the other.
We don't want this!  Instead, we must write two functions to do the
job, one of which (the recursive function) will be used inside of the
other.  One function will set up the conditions and display the
message; the other will return the word count.
Let us start with the function that causes the message to be displayed.
We can continue to call this count-words-region.
This is the function that the user will call.  It will be interactive.
Indeed, it will be similar to our previous versions of this
function, except that it will call recursive-count-words to
determine how many words are in the region.
We can readily construct a template for this function, based on our
previous versions:

;; Recursive version; uses regular expression search
(defun count-words-region (beginning end)
  "documentation…"
  (interactive-expression…)

;;; 1. Set up appropriate conditions.
  (explanatory message)
  (set-up functions…

;;; 2. Count the words.
    recursive call

;;; 3. Send a message to the user.
    message providing word count))

The definition looks straightforward, except that somehow the count
returned by the recursive call must be passed to the message
displaying the word count.  A little thought suggests that this can be
done by making use of a let expression: we can bind a variable
in the varlist of a let expression to the number of words in
the region, as returned by the recursive call; and then the
cond expression, using binding, can display the value to the
user.
Often, one thinks of the binding within a let expression as
somehow secondary to the `primary' work of a function.  But in this
case, what you might consider the `primary' job of the function,
counting words, is done within the let expression.
Using let, the function definition looks like this:

(defun count-words-region (beginning end)
  "Print number of words in the region."
  (interactive "r")

;;; 1. Set up appropriate conditions.
  (message "Counting words in region ... ")
  (save-excursion
    (goto-char beginning)

;;; 2. Count the words.
    (let ((count (recursive-count-words end)))

;;; 3. Send a message to the user.
      (cond ((zerop count)
             (message
              "The region does NOT have any words."))
            ((= 1 count)
             (message
              "The region has 1 word."))
            (t
             (message
              "The region has %d words." count))))))

Next, we need to write the recursive counting function.
A recursive function has at least three parts: the `do-again-test', the
`next-step-expression', and the recursive call.
The do-again-test determines whether the function will or will not be
called again.  Since we are counting words in a region and can use a
function that moves point forward for every word, the do-again-test
can check whether point is still within the region.  The do-again-test
should find the value of point and determine whether point is before,
at, or after the value of the end of the region.  We can use the
point function to locate point.  Clearly, we must pass the
value of the end of the region to the recursive counting function as an
argument.
In addition, the do-again-test should also test whether the search finds a
word.  If it does not, the function should not call itself again.
The next-step-expression changes a value so that when the recursive
function is supposed to stop calling itself, it stops.  More
precisely, the next-step-expression changes a value so that at the
right time, the do-again-test stops the recursive function from
calling itself again.  In this case, the next-step-expression can be
the expression that moves point forward, word by word.
The third part of a recursive function is the recursive call.
Somewhere, also, we also need a part that does the `work' of the
function, a part that does the counting.  A vital part!
But already, we have an outline of the recursive counting function:

(defun recursive-count-words (region-end)
  "documentation…"
   do-again-test
   next-step-expression
   recursive call)

Now we need to fill in the slots.  Let's start with the simplest cases
first:  if point is at or beyond the end of the region, there cannot
be any words in the region, so the function should return zero.
Likewise, if the search fails, there are no words to count, so the
function should return zero.
On the other hand, if point is within the region and the search
succeeds, the function should call itself again.
Thus, the do-again-test should look like this:

(and (< (point) region-end)
     (re-search-forward "\\w+\\W*" region-end t))

Note that the search expression is part of the do-again-test—the
function returns t if its search succeeds and nil if it
fails.  (See The Whitespace Bug in count-words-region, for an explanation of how
re-search-forward works.)
The do-again-test is the true-or-false test of an if clause.
Clearly, if the do-again-test succeeds, the then-part of the if
clause should call the function again; but if it fails, the else-part
should return zero since either point is outside the region or the
search failed because there were no words to find.
But before considering the recursive call, we need to consider the
next-step-expression.  What is it?  Interestingly, it is the search
part of the do-again-test.
In addition to returning t or nil for the
do-again-test, re-search-forward moves point forward as a side
effect of a successful search.  This is the action that changes the
value of point so that the recursive function stops calling itself
when point completes its movement through the region.  Consequently,
the re-search-forward expression is the next-step-expression.
In outline, then, the body of the recursive-count-words
function looks like this:

(if do-again-test-and-next-step-combined
    ;; then
    recursive-call-returning-count
  ;; else
  return-zero)

How to incorporate the mechanism that counts?
If you are not used to writing recursive functions, a question like
this can be troublesome.  But it can and should be approached
systematically.
We know that the counting mechanism should be associated in some way
with the recursive call.  Indeed, since the next-step-expression moves
point forward by one word, and since a recursive call is made for
each word, the counting mechanism must be an expression that adds one
to the value returned by a call to recursive-count-words.
Consider several cases:
	If there are two words in the region, the function should return
a value resulting from adding one to the value returned when it counts
the first word, plus the number returned when it counts the remaining
words in the region, which in this case is one.

	If there is one word in the region, the function should return
a value resulting from adding one to the value returned when it counts
that word, plus the number returned when it counts the remaining
words in the region, which in this case is zero.

	If there are no words in the region, the function should return zero.



From the sketch we can see that the else-part of the if returns
zero for the case of no words.  This means that the then-part of the
if must return a value resulting from adding one to the value
returned from a count of the remaining words.
The expression will look like this, where 1+ is a function that
adds one to its argument.

(1+ (recursive-count-words region-end))

The whole recursive-count-words function will then look like
this:

(defun recursive-count-words (region-end)
  "documentation…"

;;; 1. do-again-test
  (if (and (< (point) region-end)
           (re-search-forward "\\w+\\W*" region-end t))

;;; 2. then-part: the recursive call
      (1+ (recursive-count-words region-end))

;;; 3. else-part
    0))

Let's examine how this works:
If there are no words in the region, the else part of the if
expression is evaluated and consequently the function returns zero.
If there is one word in the region, the value of point is less than
the value of region-end and the search succeeds.  In this case,
the true-or-false-test of the if expression tests true, and the
then-part of the if expression is evaluated.  The counting
expression is evaluated.  This expression returns a value (which will
be the value returned by the whole function) that is the sum of one
added to the value returned by a recursive call.
Meanwhile, the next-step-expression has caused point to jump over the
first (and in this case only) word in the region.  This means that
when (recursive-count-words region-end) is evaluated a second
time, as a result of the recursive call, the value of point will be
equal to or greater than the value of region end.  So this time,
recursive-count-words will return zero.  The zero will be added
to one, and the original evaluation of recursive-count-words
will return one plus zero, which is one, which is the correct amount.
Clearly, if there are two words in the region, the first call to
recursive-count-words returns one added to the value returned
by calling recursive-count-words on a region containing the
remaining word—that is, it adds one to one, producing two, which is
the correct amount.
Similarly, if there are three words in the region, the first call to
recursive-count-words returns one added to the value returned
by calling recursive-count-words on a region containing the
remaining two words—and so on and so on.
With full documentation the two functions look like this:
The recursive function:


(defun recursive-count-words (region-end)
  "Number of words between point and REGION-END."

;;; 1. do-again-test
  (if (and (< (point) region-end)
           (re-search-forward "\\w+\\W*" region-end t))

;;; 2. then-part: the recursive call
      (1+ (recursive-count-words region-end))

;;; 3. else-part
    0))

The wrapper:

;;; Recursive version
(defun count-words-region (beginning end)
  "Print number of words in the region.

Words are defined as at least one word-constituent
character followed by at least one character that is
not a word-constituent.  The buffer's syntax table
determines which characters these are."
  (interactive "r")
  (message "Counting words in region ... ")
  (save-excursion
    (goto-char beginning)
    (let ((count (recursive-count-words end)))
      (cond ((zerop count)
             (message
              "The region does NOT have any words."))
            ((= 1 count)
             (message "The region has 1 word."))
            (t
             (message
              "The region has %d words." count))))))


Exercise: Counting Punctuation



Using a while loop, write a function to count the number of
punctuation marks in a region—period, comma, semicolon, colon,
exclamation mark, and question mark.  Do the same using recursion.

Chapter 14. Counting Words in a defun




Our next project is to count the number of words in a function
definition.  Clearly, this can be done using some variant of
count-word-region.  See Counting Words: Repetition and Regexps.  If we are just going to count the words in
one definition, it is easy enough to mark the definition with the
C-M-h (mark-defun) command, and then call
count-word-region.
However, I am more ambitious: I want to count the words and symbols in
every definition in the Emacs sources and then print a graph that
shows how many functions there are of each length: how many contain 40
to 49 words or symbols, how many contain 50 to 59 words or symbols,
and so on.  I have often been curious how long a typical function is,
and this will tell.
Divide and Conquer



Described in one phrase, the histogram project is daunting; but
divided into numerous small steps, each of which we can take one at a
time, the project becomes less fearsome.  Let us consider what the
steps must be:
	First, write a function to count the words in one definition.  This
includes the problem of handling symbols as well as words.

	Second, write a function to list the numbers of words in each function
in a file.  This function can use the count-words-in-defun
function.

	Third, write a function to list the numbers of words in each function
in each of several files.  This entails automatically finding the
various files, switching to them, and counting the words in the
definitions within them.

	Fourth, write a function to convert the list of numbers that we
created in step three to a form that will be suitable for printing as
a graph.

	Fifth, write a function to print the results as a graph.



This is quite a project!  But if we take each step slowly, it will not
be difficult.


What to Count?




When we first start thinking about how to count the words in a
function definition, the first question is (or ought to be) what are
we going to count?  When we speak of `words' with respect to a Lisp
function definition, we are actually speaking, in large part, of
`symbols'.  For example, the following multiply-by-seven
function contains the five symbols defun,
multiply-by-seven, number, *, and 7.  In
addition, in the documentation string, it contains the four words
‘Multiply’, ‘NUMBER’, ‘by’, and ‘seven’.  The
symbol ‘number’ is repeated, so the definition contains a total
of ten words and symbols.

(defun multiply-by-seven (number)
  "Multiply NUMBER by seven."
  (* 7 number))

However, if we mark the multiply-by-seven definition with
C-M-h (mark-defun), and then call
count-words-region on it, we will find that
count-words-region claims the definition has eleven words, not
ten!  Something is wrong!
The problem is twofold: count-words-region does not count the
‘*’ as a word, and it counts the single symbol,
multiply-by-seven, as containing three words.  The hyphens are
treated as if they were interword spaces rather than intraword
connectors: ‘multiply-by-seven’ is counted as if it were written
‘multiply by seven’.
The cause of this confusion is the regular expression search within
the count-words-region definition that moves point forward word
by word.  In the canonical version of count-words-region, the
regexp is:

"\\w+\\W*"

This regular expression is a pattern defining one or more word
constituent characters possibly followed by one or more characters
that are not word constituents.  What is meant by `word constituent
characters' brings us to the issue of syntax, which is worth a section
of its own.

What Constitutes a Word or Symbol?




Emacs treats different characters as belonging to different
syntax categories.  For example, the regular expression,
‘\\w+’, is a pattern specifying one or more word
constituent characters.  Word constituent characters are members of
one syntax category.  Other syntax categories include the class of
punctuation characters, such as the period and the comma, and the
class of whitespace characters, such as the blank space and the tab
character.  (For more information, see See section ``The Syntax Table'' in The GNU Emacs Manual, and See section ``Syntax Tables'' in The GNU Emacs Lisp Reference Manual.)
Syntax tables specify which characters belong to which categories.
Usually, a hyphen is not specified as a `word constituent character'.
Instead, it is specified as being in the `class of characters that are
part of symbol names but not words.'  This means that the
count-words-region function treats it in the same way it treats
an interword white space, which is why count-words-region
counts ‘multiply-by-seven’ as three words.
There are two ways to cause Emacs to count ‘multiply-by-seven’ as
one symbol: modify the syntax table or modify the regular expression.
We could redefine a hyphen as a word constituent character by
modifying the syntax table that Emacs keeps for each mode.  This
action would serve our purpose, except that a hyphen is merely the
most common character within symbols that is not typically a word
constituent character; there are others, too.
Alternatively, we can redefine the regular expression used in the
count-words definition so as to include symbols.  This
procedure has the merit of clarity, but the task is a little tricky.
The first part is simple enough: the pattern must match “at least one
character that is a word or symbol constituent”.  Thus:

"\\(\\w\\|\\s_\\)+"

The ‘\\(’ is the first part of the grouping construct that
includes the ‘\\w’ and the ‘\\s_’ as alternatives, separated
by the ‘\\|’.  The ‘\\w’ matches any word-constituent
character and the ‘\\s_’ matches any character that is part of a
symbol name but not a word-constituent character.  The ‘+’
following the group indicates that the word or symbol constituent
characters must be matched at least once.
However, the second part of the regexp is more difficult to design.
What we want is to follow the first part with “optionally one or more
characters that are not constituents of a word or symbol”.  At first,
I thought I could define this with the following:

"\\(\\W\\|\\S_\\)*"

The upper case ‘W’ and ‘S’ match characters that are
not word or symbol constituents.  Unfortunately, this
expression matches any character that is either not a word constituent
or not a symbol constituent.  This matches any character!
I then noticed that every word or symbol in my test region was
followed by white space (blank space, tab, or newline).  So I tried
placing a pattern to match one or more blank spaces after the pattern
for one or more word or symbol constituents.  This failed, too.  Words
and symbols are often separated by whitespace, but in actual code
parentheses may follow symbols and punctuation may follow words.  So
finally, I designed a pattern in which the word or symbol constituents
are followed optionally by characters that are not white space and
then followed optionally by white space.
Here is the full regular expression:

"\\(\\w\\|\\s_\\)+[^ \t\n]*[ \t\n]*"


The count-words-in-defun Function




We have seen that there are several ways to write a
count-word-region function.  To write a
count-words-in-defun, we need merely adapt one of these
versions.
The version that uses a while loop is easy to understand, so I
am going to adapt that.  Because count-words-in-defun will be
part of a more complex program, it need not be interactive and it need
not display a message but just return the count.  These considerations
simplify the definition a little.
On the other hand, count-words-in-defun will be used within a
buffer that contains function definitions.  Consequently, it is
reasonable to ask that the function determine whether it is called
when point is within a function definition, and if it is, to return
the count for that definition.  This adds complexity to the
definition, but saves us from needing to pass arguments to the
function.
These considerations lead us to prepare the following template:

(defun count-words-in-defun ()
  "documentation…"
  (set up…
     (while loop…)
   return count)

As usual, our job is to fill in the slots.
First, the set up.
We are presuming that this function will be called within a buffer
containing function definitions.  Point will either be within a
function definition or not.  For count-words-in-defun to work,
point must move to the beginning of the definition, a counter must
start at zero, and the counting loop must stop when point reaches the
end of the definition.
The beginning-of-defun function searches backwards for an
opening delimiter such as a ‘(’ at the beginning of a line, and
moves point to that position, or else to the limit of the search.  In
practice, this means that beginning-of-defun moves point to the
beginning of an enclosing or preceding function definition, or else to
the beginning of the buffer.  We can use beginning-of-defun to
place point where we wish to start.
The while loop requires a counter to keep track of the words or
symbols being counted.  A let expression can be used to create
a local variable for this purpose, and bind it to an initial value of zero.
The end-of-defun function works like beginning-of-defun
except that it moves point to the end of the definition.
end-of-defun can be used as part of an expression that
determines the position of the end of the definition.
The set up for count-words-in-defun takes shape rapidly: first
we move point to the beginning of the definition, then we create a
local variable to hold the count, and finally, we record the position
of the end of the definition so the while loop will know when to stop
looping.
The code looks like this:

(beginning-of-defun)
(let ((count 0)
      (end (save-excursion (end-of-defun) (point))))

The code is simple.  The only slight complication is likely to concern
end: it is bound to the position of the end of the definition
by a save-excursion expression that returns the value of point
after end-of-defun temporarily moves it to the end of the
definition.
The second part of the count-words-in-defun, after the set up,
is the while loop.
The loop must contain an expression that jumps point forward word by
word and symbol by symbol, and another expression that counts the
jumps.  The true-or-false-test for the while loop should test
true so long as point should jump forward, and false when point is at
the end of the definition.  We have already redefined the regular
expression for this (see the section called “What Constitutes a Word or Symbol?”), so the loop is straightforward:

(while (and (< (point) end)
            (re-search-forward
             "\\(\\w\\|\\s_\\)+[^ \t\n]*[ \t\n]*" end t)
  (setq count (1+ count)))

The third part of the function definition returns the count of words
and symbols.  This part is the last expression within the body of the
let expression, and can be, very simply, the local variable
count, which when evaluated returns the count.
Put together, the count-words-in-defun definition looks like this:


(defun count-words-in-defun ()
  "Return the number of words and symbols in a defun."
  (beginning-of-defun)
  (let ((count 0)
        (end (save-excursion (end-of-defun) (point))))
    (while
        (and (< (point) end)
             (re-search-forward
              "\\(\\w\\|\\s_\\)+[^ \t\n]*[ \t\n]*"
              end t))
      (setq count (1+ count)))
    count))

How to test this?  The function is not interactive, but it is easy to
put a wrapper around the function to make it interactive; we can use
almost the same code as for the recursive version of
count-words-region:

;;; Interactive version.
(defun count-words-defun ()
  "Number of words and symbols in a function definition."
  (interactive)
  (message
   "Counting words and symbols in function definition ... ")
  (let ((count (count-words-in-defun)))
    (cond
     ((zerop count)
      (message
       "The definition does NOT have any words or symbols."))
     ((= 1 count)
      (message
       "The definition has 1 word or symbol."))
     (t
      (message
       "The definition has %d words or symbols." count)))))

Let's re-use C-c = as a convenient keybinding:

(global-set-key "\C-c=" 'count-words-defun)

Now we can try out count-words-defun: install both
count-words-in-defun and count-words-defun, and set the
keybinding, and then place the cursor within the following definition:

(defun multiply-by-seven (number)
  "Multiply NUMBER by seven."
  (* 7 number))
     ⇒ 10

Success!  The definition has 10 words and symbols.
The next problem is to count the numbers of words and symbols in
several definitions within a single file.

Count Several defuns Within a File



A file such as simple.el may have a hundred or more function
definitions within it.  Our long term goal is to collect statistics on
many files, but as a first step, our immediate goal is to collect
statistics on one file.
The information will be a series of numbers, each number being the
length of a function definition.  We can store the numbers in a list.
We know that we will want to incorporate the information regarding one
file with information about many other files; this means that the
function for counting definition lengths within one file need only
return the list of lengths.  It need not and should not display any
messages.
The word count commands contain one expression to jump point forward
word by word and another expression to count the jumps.  The function
to return the lengths of definitions can be designed to work the same
way, with one expression to jump point forward definition by
definition and another expression to construct the lengths' list.
This statement of the problem makes it elementary to write the
function definition.  Clearly, we will start the count at the
beginning of the file, so the first command will be (goto-char
(point-min)).  Next, we start the while loop; and the
true-or-false test of the loop can be a regular expression search for
the next function definition—so long as the search succeeds, point
is moved forward and then the body of the loop is evaluated.  The body
needs an expression that constructs the lengths' list.  cons,
the list construction command, can be used to create the list.  That
is almost all there is to it.
Here is what this fragment of code looks like:

(goto-char (point-min))
(while (re-search-forward "^(defun" nil t)
  (setq lengths-list
        (cons (count-words-in-defun) lengths-list)))

What we have left out is the mechanism for finding the file that
contains the function definitions.
In previous examples, we either used this, the Info file, or we
switched back and forth to some other buffer, such as the
*scratch* buffer.
Finding a file is a new process that we have not yet discussed.

Find a File




To find a file in Emacs, you use the C-x C-f (find-file)
command.  This command is almost, but not quite right for the lengths
problem.
Let's look at the source for find-file:

(defun find-file (filename)
  "Edit file FILENAME.
Switch to a buffer visiting file FILENAME,
creating one if none already exists."
  (interactive "FFind file: ")
  (switch-to-buffer (find-file-noselect filename)))

(The most recent version of the find-file function definition
permits you to specify optional wildcards to visit multiple files; that
makes the definition more complex and we will not discuss it here,
since it is not relevant.  You can see its source using either
M-. (find-tag) or C-h f (describe-function).)
The definition I am showing possesses short but complete documentation
and an interactive specification that prompts you for a file name when
you use the command interactively.  The body of the definition
contains two functions, find-file-noselect and
switch-to-buffer.
According to its documentation as shown by C-h f (the
describe-function command), the find-file-noselect
function reads the named file into a buffer and returns the buffer.
(Its most recent version includes an optional wildcards argument,
too, as well as another to read a file literally and an other you
suppress warning messages.  These optional arguments are irrelevant.)
However, the find-file-noselect function does not select the
buffer in which it puts the file.  Emacs does not switch its attention
(or yours if you are using find-file-noselect) to the selected
buffer.  That is what switch-to-buffer does: it switches the
buffer to which Emacs attention is directed; and it switches the
buffer displayed in the window to the new buffer.  We have discussed
buffer switching elsewhere.  (See the section called “Switching Buffers”.)
In this histogram project, we do not need to display each file on the
screen as the program determines the length of each definition within
it.  Instead of employing switch-to-buffer, we can work with
set-buffer, which redirects the attention of the computer
program to a different buffer but does not redisplay it on the screen.
So instead of calling on find-file to do the job, we must write
our own expression.
The task is easy: use find-file-noselect and set-buffer.

lengths-list-file in Detail



The core of the lengths-list-file function is a while
loop containing a function to move point forward `defun by defun' and
a function to count the number of words and symbols in each defun.
This core must be surrounded by functions that do various other tasks,
including finding the file, and ensuring that point starts out at the
beginning of the file.  The function definition looks like this:


(defun lengths-list-file (filename)
  "Return list of definitions' lengths within FILE.
The returned list is a list of numbers.
Each number is the number of words or
symbols in one function definition."
  (message "Working on `%s' ... " filename)
  (save-excursion
    (let ((buffer (find-file-noselect filename))
          (lengths-list))
      (set-buffer buffer)
      (setq buffer-read-only t)
      (widen)
      (goto-char (point-min))
      (while (re-search-forward "^(defun" nil t)
        (setq lengths-list
              (cons (count-words-in-defun) lengths-list)))
      (kill-buffer buffer)
      lengths-list)))

The function is passed one argument, the name of the file on which it
will work.  It has four lines of documentation, but no interactive
specification.  Since people worry that a computer is broken if they
don't see anything going on, the first line of the body is a
message.
The next line contains a save-excursion that returns Emacs'
attention to the current buffer when the function completes.  This is
useful in case you embed this function in another function that
presumes point is restored to the original buffer.
In the varlist of the let expression, Emacs finds the file and
binds the local variable buffer to the buffer containing the
file.  At the same time, Emacs creates lengths-list as a local
variable.
Next, Emacs switches its attention to the buffer.
In the following line, Emacs makes the buffer read-only.  Ideally,
this line is not necessary.  None of the functions for counting words
and symbols in a function definition should change the buffer.
Besides, the buffer is not going to be saved, even if it were changed.
This line is entirely the consequence of great, perhaps excessive,
caution.  The reason for the caution is that this function and those
it calls work on the sources for Emacs and it is inconvenient if they
are inadvertently modified.  It goes without saying that I did not
realize a need for this line until an experiment went awry and started
to modify my Emacs source files …
Next comes a call to widen the buffer if it is narrowed.  This
function is usually not needed—Emacs creates a fresh buffer if none
already exists; but if a buffer visiting the file already exists Emacs
returns that one.  In this case, the buffer may be narrowed and must
be widened.  If we wanted to be fully `user-friendly', we would
arrange to save the restriction and the location of point, but we
won't.
The (goto-char (point-min)) expression moves point to the
beginning of the buffer.
Then comes a while loop in which the `work' of the function is
carried out.  In the loop, Emacs determines the length of each
definition and constructs a lengths' list containing the information.
Emacs kills the buffer after working through it.  This is to save
space inside of Emacs.  My version of GNU Emacs 19 contained over 300
source files of interest; GNU Emacs 22 contains over a thousand source
files.  Another function will apply lengths-list-file to each
of the files.
Finally, the last expression within the let expression is the
lengths-list variable; its value is returned as the value of
the whole function.
You can try this function by installing it in the usual fashion.  Then
place your cursor after the following expression and type C-x
C-e (eval-last-sexp).

(lengths-list-file
 "/usr/local/share/emacs/22.1.1/lisp/emacs-lisp/debug.el")

(You may need to change the pathname of the file; the one here is for
GNU Emacs version 22.1.1.  To change the expression, copy it to
the *scratch* buffer and edit it.
(Also, to see the full length of the list, rather than a truncated
version, you may have to evaluate the following:

(custom-set-variables '(eval-expression-print-length nil))

(See Specifying Variables using defcustom.
Then evaluate the lengths-list-file expression.)
The lengths' list for debug.el takes less than a second to
produce and looks like this in GNU Emacs 22:

(83 113 105 144 289 22 30 97 48 89 25 52 52 88 28 29 77 49 43 290 232 587)

(Using my old machine, the version 19 lengths' list for debug.el
took seven seconds to produce and looked like this:

(75 41 80 62 20 45 44 68 45 12 34 235)

(The newer version of debug.el contains more defuns than the
earlier one; and my new machine is much faster than the old one.)
Note that the length of the last definition in the file is first in
the list.

Count Words in defuns in Different Files



In the previous section, we created a function that returns a list of
the lengths of each definition in a file.  Now, we want to define a
function to return a master list of the lengths of the definitions in
a list of files.
Working on each of a list of files is a repetitious act, so we can use
either a while loop or recursion.
Determine the lengths of defuns



The design using a while loop is routine.  The argument passed
the function is a list of files.  As we saw earlier (see the section called “A while Loop and a List”), you can write a while loop so that the body of the
loop is evaluated if such a list contains elements, but to exit the
loop if the list is empty.  For this design to work, the body of the
loop must contain an expression that shortens the list each time the
body is evaluated, so that eventually the list is empty.  The usual
technique is to set the value of the list to the value of the cdr
of the list each time the body is evaluated.
The template looks like this:

(while test-whether-list-is-empty
  body…
  set-list-to-cdr-of-list)
     
Also, we remember that a while loop returns nil (the
result of evaluating the true-or-false-test), not the result of any
evaluation within its body.  (The evaluations within the body of the
loop are done for their side effects.)  However, the expression that
sets the lengths' list is part of the body—and that is the value
that we want returned by the function as a whole.  To do this, we
enclose the while loop within a let expression, and
arrange that the last element of the let expression contains
the value of the lengths' list.  (See Loop Example with an Incrementing Counter.)
These considerations lead us directly to the function itself:

;;; Use while loop.
(defun lengths-list-many-files (list-of-files)
  "Return list of lengths of defuns in LIST-OF-FILES."
  (let (lengths-list)

;;; true-or-false-test
    (while list-of-files
      (setq lengths-list
            (append
             lengths-list

;;; Generate a lengths' list.
             (lengths-list-file
              (expand-file-name (car list-of-files)))))

;;; Make files' list shorter.
      (setq list-of-files (cdr list-of-files)))

;;; Return final value of lengths' list.
    lengths-list))

expand-file-name is a built-in function that converts a file
name to the absolute, long, path name form.  The function employs the
name of the directory in which the function is called.
Thus, if expand-file-name is called on debug.el when
Emacs is visiting the
/usr/local/share/emacs/22.1.1/lisp/emacs-lisp/ directory,

debug.el

becomes

/usr/local/share/emacs/22.1.1/lisp/emacs-lisp/debug.el

The only other new element of this function definition is the as yet
unstudied function append, which merits a short section for
itself.

The append Function



The append function attaches one list to another.  Thus,

(append '(1 2 3 4) '(5 6 7 8))

produces the list

(1 2 3 4 5 6 7 8)

This is exactly how we want to attach two lengths' lists produced by
lengths-list-file to each other.  The results contrast with
cons,

(cons '(1 2 3 4) '(5 6 7 8))

which constructs a new list in which the first argument to cons
becomes the first element of the new list:

((1 2 3 4) 5 6 7 8)



Recursively Count Words in Different Files



Besides a while loop, you can work on each of a list of files
with recursion.  A recursive version of lengths-list-many-files
is short and simple.
The recursive function has the usual parts: the `do-again-test', the
`next-step-expression', and the recursive call.  The `do-again-test'
determines whether the function should call itself again, which it
will do if the list-of-files contains any remaining elements;
the `next-step-expression' resets the list-of-files to the
cdr of itself, so eventually the list will be empty; and the
recursive call calls itself on the shorter list.  The complete
function is shorter than this description!


(defun recursive-lengths-list-many-files (list-of-files)
  "Return list of lengths of each defun in LIST-OF-FILES."
  (if list-of-files                     ; do-again-test
      (append
       (lengths-list-file
        (expand-file-name (car list-of-files)))
       (recursive-lengths-list-many-files
        (cdr list-of-files)))))

In a sentence, the function returns the lengths' list for the first of
the list-of-files appended to the result of calling itself on
the rest of the list-of-files.
Here is a test of recursive-lengths-list-many-files, along with
the results of running lengths-list-file on each of the files
individually.
Install recursive-lengths-list-many-files and
lengths-list-file, if necessary, and then evaluate the
following expressions.  You may need to change the files' pathnames;
those here work when this Info file and the Emacs sources are located
in their customary places.  To change the expressions, copy them to
the *scratch* buffer, edit them, and then evaluate them.
The results are shown after the ‘⇒’.  (These results are
for files from Emacs version 22.1.1; files from other versions of
Emacs may produce different results.)

(cd "/usr/local/share/emacs/22.1.1/")

(lengths-list-file "./lisp/macros.el")
     ⇒ (283 263 480 90)

(lengths-list-file "./lisp/mail/mailalias.el")
     ⇒ (38 32 29 95 178 180 321 218 324)

(lengths-list-file "./lisp/makesum.el")
     ⇒ (85 181)

  (recursive-lengths-list-many-files
   '("./lisp/macros.el"
     "./lisp/mail/mailalias.el"
     "./lisp/makesum.el"))
       ⇒ (283 263 480 90 38 32 29 95 178 180 321 218 324 85 181)

The recursive-lengths-list-many-files function produces the
output we want.
The next step is to prepare the data in the list for display in a graph.

Prepare the Data for Display in a Graph



The recursive-lengths-list-many-files function returns a list
of numbers.  Each number records the length of a function definition.
What we need to do now is transform this data into a list of numbers
suitable for generating a graph.  The new list will tell how many
functions definitions contain less than 10 words and
symbols, how many contain between 10 and 19 words and symbols, how
many contain between 20 and 29 words and symbols, and so on.
In brief, we need to go through the lengths' list produced by the
recursive-lengths-list-many-files function and count the number
of defuns within each range of lengths, and produce a list of those
numbers.
The Data for Display in Detail



Based on what we have done before, we can readily foresee that it
should not be too hard to write a function that `cdrs' down the
lengths' list, looks at each element, determines which length range it
is in, and increments a counter for that range.
However, before beginning to write such a function, we should consider
the advantages of sorting the lengths' list first, so the numbers are
ordered from smallest to largest.  First, sorting will make it easier
to count the numbers in each range, since two adjacent numbers will
either be in the same length range or in adjacent ranges.  Second, by
inspecting a sorted list, we can discover the highest and lowest
number, and thereby determine the largest and smallest length range
that we will need.

Sorting Lists




Emacs contains a function to sort lists, called (as you might guess)
sort.  The sort function takes two arguments, the list
to be sorted, and a predicate that determines whether the first of
two list elements is “less” than the second.
As we saw earlier (see Using the Wrong Type Object as an Argument), a predicate is a function that
determines whether some property is true or false.  The sort
function will reorder a list according to whatever property the
predicate uses; this means that sort can be used to sort
non-numeric lists by non-numeric criteria—it can, for example,
alphabetize a list.
The < function is used when sorting a numeric list.  For example,

(sort '(4 8 21 17 33 7 21 7) '<)

produces this:

(4 7 7 8 17 21 21 33)

(Note that in this example, both the arguments are quoted so that the
symbols are not evaluated before being passed to sort as
arguments.)
Sorting the list returned by the
recursive-lengths-list-many-files function is straightforward;
it uses the < function:

(sort
 (recursive-lengths-list-many-files
  '("./lisp/macros.el"
    "./lisp/mailalias.el"
    "./lisp/makesum.el"))
 '<)

which produces:

(29 32 38 85 90 95 178 180 181 218 263 283 321 324 480)

(Note that in this example, the first argument to sort is not
quoted, since the expression must be evaluated so as to produce the
list that is passed to sort.)

Making a List of Files



The recursive-lengths-list-many-files function requires a list
of files as its argument.  For our test examples, we constructed such
a list by hand; but the Emacs Lisp source directory is too large for
us to do for that.  Instead, we will write a function to do the job
for us.  In this function, we will use both a while loop and a
recursive call.
We did not have to write a function like this for older versions of
GNU Emacs, since they placed all the ‘.el’ files in one
directory.  Instead, we were able to use the directory-files
function, which lists the names of files that match a specified
pattern within a single directory.
However, recent versions of Emacs place Emacs Lisp files in
sub-directories of the top level lisp directory.  This
re-arrangement eases navigation.  For example, all the mail related
files are in a lisp sub-directory called mail.  But at
the same time, this arrangement forces us to create a file listing
function that descends into the sub-directories.
We can create this function, called files-in-below-directory,
using familiar functions such as car, nthcdr, and
substring in conjunction with an existing function called
directory-files-and-attributes.  This latter function not only
lists all the filenames in a directory, including the names
of sub-directories, but also their attributes.
To restate our goal: to create a function that will enable us
to feed filenames to recursive-lengths-list-many-files
as a list that looks like this (but with more elements):

("./lisp/macros.el"
 "./lisp/mail/rmail.el"
 "./lisp/makesum.el")

The directory-files-and-attributes function returns a list of
lists.  Each of the lists within the main list consists of 13
elements.  The first element is a string that contains the name of the
file – which, in GNU/Linux, may be a `directory file', that is to
say, a file with the special attributes of a directory.  The second
element of the list is t for a directory, a string
for symbolic link (the string is the name linked to), or nil.
For example, the first ‘.el’ file in the lisp/ directory
is abbrev.el.  Its name is
/usr/local/share/emacs/22.1.1/lisp/abbrev.el and it is not a
directory or a symbolic link.
This is how directory-files-and-attributes lists that file and
its attributes:

("abbrev.el"
nil
1
1000
100
(17733 259)
(17491 28834)
(17596 62124)
13157
"-rw-rw-r--"
nil
2971624
773)

On the other hand, mail/ is a directory within the lisp/
directory.  The beginning of its listing looks like this:

("mail"
t
…
)

(To learn about the different attributes, look at the documentation of
file-attributes.  Bear in mind that the file-attributes
function does not list the filename, so its first element is
directory-files-and-attributes's second element.)
We will want our new function, files-in-below-directory, to
list the ‘.el’ files in the directory it is told to check, and in
any directories below that directory.
This gives us a hint on how to construct
files-in-below-directory:  within a directory, the function
should add ‘.el’ filenames to a list; and if, within a directory,
the function comes upon a sub-directory, it should go into that
sub-directory and repeat its actions.
However, we should note that every directory contains a name that
refers to itself, called ., (“dot”) and a name that refers to
its parent directory, called .. (“double dot”).  (In
/, the root directory, .. refers to itself, since
/ has no parent.)  Clearly, we do not want our
files-in-below-directory function to enter those directories,
since they always lead us, directly or indirectly, to the current
directory.
Consequently, our files-in-below-directory function must do
several tasks:
	Check to see whether it is looking at a filename that ends in
‘.el’; and if so, add its name to a list.

	Check to see whether it is looking at a filename that is the name of a
directory; and if so,
	Check to see whether it is looking at .  or ..; and if
so skip it.

	Or else, go into that directory and repeat the process.






Let's write a function definition to do these tasks.  We will use a
while loop to move from one filename to another within a
directory, checking what needs to be done; and we will use a recursive
call to repeat the actions on each sub-directory.  The recursive
pattern is `accumulate'
(see Recursive Pattern: accumulate),
using append as the combiner.
Here is the function:

(defun files-in-below-directory (directory)
  "List the .el files in DIRECTORY and in its sub-directories."
  ;; Although the function will be used non-interactively,
  ;; it will be easier to test if we make it interactive.
  ;; The directory will have a name such as
  ;;  "/usr/local/share/emacs/22.1.1/lisp/"
  (interactive "DDirectory name: ")
  (let (el-files-list
        (current-directory-list
         (directory-files-and-attributes directory t)))
    ;; while we are in the current directory
    (while current-directory-list
      (cond
       ;; check to see whether filename ends in `.el'
       ;; and if so, append its name to a list.
       ((equal ".el" (substring (car (car current-directory-list)) -3))
        (setq el-files-list
              (cons (car (car current-directory-list)) el-files-list)))
       ;; check whether filename is that of a directory
       ((eq t (car (cdr (car current-directory-list))))
        ;; decide whether to skip or recurse
        (if
            (equal "."
                   (substring (car (car current-directory-list)) -1))
            ;; then do nothing since filename is that of
            ;;   current directory or parent, "." or ".."
            ()
          ;; else descend into the directory and repeat the process
          (setq el-files-list
                (append
                 (files-in-below-directory
                  (car (car current-directory-list)))
                 el-files-list)))))
      ;; move to the next filename in the list; this also
      ;; shortens the list so the while loop eventually comes to an end
      (setq current-directory-list (cdr current-directory-list)))
    ;; return the filenames
    el-files-list))

The files-in-below-directory directory-files function
takes one argument, the name of a directory.
Thus, on my system,

(length
 (files-in-below-directory "/usr/local/share/emacs/22.1.1/lisp/"))

tells me that in and below my Lisp sources directory are 1031
‘.el’ files.
files-in-below-directory returns a list in reverse alphabetical
order.  An expression to sort the list in alphabetical order looks
like this:

(sort
 (files-in-below-directory "/usr/local/share/emacs/22.1.1/lisp/")
 'string-lessp)


Counting function definitions



Our immediate goal is to generate a list that tells us how many
function definitions contain fewer than 10 words and symbols, how many
contain between 10 and 19 words and symbols, how many contain between
20 and 29 words and symbols, and so on.
With a sorted list of numbers, this is easy: count how many elements
of the list are smaller than 10, then, after moving past the numbers
just counted, count how many are smaller than 20, then, after moving
past the numbers just counted, count how many are smaller than 30, and
so on.  Each of the numbers, 10, 20, 30, 40, and the like, is one
larger than the top of that range.  We can call the list of such
numbers the top-of-ranges list.
If we wished, we could generate this list automatically, but it is
simpler to write a list manually.  Here it is:


(defvar top-of-ranges
 '(10  20  30  40  50
   60  70  80  90 100
  110 120 130 140 150
  160 170 180 190 200
  210 220 230 240 250
  260 270 280 290 300)
 "List specifying ranges for `defuns-per-range'.")

To change the ranges, we edit this list.
Next, we need to write the function that creates the list of the
number of definitions within each range.  Clearly, this function must
take the sorted-lengths and the top-of-ranges lists
as arguments.
The defuns-per-range function must do two things again and
again: it must count the number of definitions within a range
specified by the current top-of-range value; and it must shift to the
next higher value in the top-of-ranges list after counting the
number of definitions in the current range.  Since each of these
actions is repetitive, we can use while loops for the job.
One loop counts the number of definitions in the range defined by the
current top-of-range value, and the other loop selects each of the
top-of-range values in turn.
Several entries of the sorted-lengths list are counted for each
range; this means that the loop for the sorted-lengths list
will be inside the loop for the top-of-ranges list, like a
small gear inside a big gear.
The inner loop counts the number of definitions within the range.  It
is a simple counting loop of the type we have seen before.
(See A loop with an incrementing counter.)
The true-or-false test of the loop tests whether the value from the
sorted-lengths list is smaller than the current value of the
top of the range.  If it is, the function increments the counter and
tests the next value from the sorted-lengths list.
The inner loop looks like this:

(while length-element-smaller-than-top-of-range
  (setq number-within-range (1+ number-within-range))
  (setq sorted-lengths (cdr sorted-lengths)))

The outer loop must start with the lowest value of the
top-of-ranges list, and then be set to each of the succeeding
higher values in turn.  This can be done with a loop like this:

(while top-of-ranges
  body-of-loop…
  (setq top-of-ranges (cdr top-of-ranges)))

Put together, the two loops look like this:

(while top-of-ranges

  ;; Count the number of elements within the current range.
  (while length-element-smaller-than-top-of-range
    (setq number-within-range (1+ number-within-range))
    (setq sorted-lengths (cdr sorted-lengths)))

  ;; Move to next range.
  (setq top-of-ranges (cdr top-of-ranges)))

In addition, in each circuit of the outer loop, Emacs should record
the number of definitions within that range (the value of
number-within-range) in a list.  We can use cons for
this purpose.  (See cons.)
The cons function works fine, except that the list it
constructs will contain the number of definitions for the highest
range at its beginning and the number of definitions for the lowest
range at its end.  This is because cons attaches new elements
of the list to the beginning of the list, and since the two loops are
working their way through the lengths' list from the lower end first,
the defuns-per-range-list will end up largest number first.
But we will want to print our graph with smallest values first and the
larger later.  The solution is to reverse the order of the
defuns-per-range-list.  We can do this using the
nreverse function, which reverses the order of a list.

For example,

(nreverse '(1 2 3 4))

produces:

(4 3 2 1)

Note that the nreverse function is “destructive”—that is,
it changes the list to which it is applied; this contrasts with the
car and cdr functions, which are non-destructive.  In
this case, we do not want the original defuns-per-range-list,
so it does not matter that it is destroyed.  (The reverse
function provides a reversed copy of a list, leaving the original list
as is.)

Put all together, the defuns-per-range looks like this:

(defun defuns-per-range (sorted-lengths top-of-ranges)
  "SORTED-LENGTHS defuns in each TOP-OF-RANGES range."
  (let ((top-of-range (car top-of-ranges))
        (number-within-range 0)
        defuns-per-range-list)

    ;; Outer loop.
    (while top-of-ranges

      ;; Inner loop.
      (while (and
              ;; Need number for numeric test.
              (car sorted-lengths)
              (< (car sorted-lengths) top-of-range))

        ;; Count number of definitions within current range.
        (setq number-within-range (1+ number-within-range))
        (setq sorted-lengths (cdr sorted-lengths)))

      ;; Exit inner loop but remain within outer loop.

      (setq defuns-per-range-list
            (cons number-within-range defuns-per-range-list))
      (setq number-within-range 0)      ; Reset count to zero.

      ;; Move to next range.
      (setq top-of-ranges (cdr top-of-ranges))
      ;; Specify next top of range value.
      (setq top-of-range (car top-of-ranges)))

    ;; Exit outer loop and count the number of defuns larger than
    ;;   the largest top-of-range value.
    (setq defuns-per-range-list
          (cons
           (length sorted-lengths)
           defuns-per-range-list))

    ;; Return a list of the number of definitions within each range,
    ;;   smallest to largest.
    (nreverse defuns-per-range-list)))

The function is straightforward except for one subtle feature.  The
true-or-false test of the inner loop looks like this:

(and (car sorted-lengths)
     (< (car sorted-lengths) top-of-range))

instead of like this:

(< (car sorted-lengths) top-of-range)

The purpose of the test is to determine whether the first item in the
sorted-lengths list is less than the value of the top of the
range.
The simple version of the test works fine unless the
sorted-lengths list has a nil value.  In that case, the
(car sorted-lengths) expression function returns
nil.  The < function cannot compare a number to
nil, which is an empty list, so Emacs signals an error and
stops the function from attempting to continue to execute.
The sorted-lengths list always becomes nil when the
counter reaches the end of the list.  This means that any attempt to
use the defuns-per-range function with the simple version of
the test will fail.
We solve the problem by using the (car sorted-lengths)
expression in conjunction with the and expression.  The
(car sorted-lengths) expression returns a non-nil
value so long as the list has at least one number within it, but
returns nil if the list is empty.  The and expression
first evaluates the (car sorted-lengths) expression, and
if it is nil, returns false without evaluating the
< expression.  But if the (car sorted-lengths)
expression returns a non-nil value, the and expression
evaluates the < expression, and returns that value as the value
of the and expression.
This way, we avoid an error.
Here is a short test of the defuns-per-range function.  First,
evaluate the expression that binds (a shortened)
top-of-ranges list to the list of values, then evaluate the
expression for binding the sorted-lengths list, and then
evaluate the defuns-per-range function.

;; (Shorter list than we will use later.)
(setq top-of-ranges
 '(110 120 130 140 150
   160 170 180 190 200))

(setq sorted-lengths
      '(85 86 110 116 122 129 154 176 179 200 265 300 300))

(defuns-per-range sorted-lengths top-of-ranges)

The list returned looks like this:

(2 2 2 0 0 1 0 2 0 0 4)

Indeed, there are two elements of the sorted-lengths list
smaller than 110, two elements between 110 and 119, two elements
between 120 and 129, and so on.  There are four elements with a value
of 200 or larger.


Chapter 15. Readying a Graph




Our goal is to construct a graph showing the numbers of function
definitions of various lengths in the Emacs lisp sources.
As a practical matter, if you were creating a graph, you would
probably use a program such as gnuplot to do the job.
(gnuplot is nicely integrated into GNU Emacs.)  In this case,
however, we create one from scratch, and in the process we will
re-acquaint ourselves with some of what we learned before and learn
more.
In this chapter, we will first write a simple graph printing function.
This first definition will be a prototype, a rapidly written
function that enables us to reconnoiter this unknown graph-making
territory.  We will discover dragons, or find that they are myth.
After scouting the terrain, we will feel more confident and enhance
the function to label the axes automatically.
Printing the Columns of a Graph



Since Emacs is designed to be flexible and work with all kinds of
terminals, including character-only terminals, the graph will need to
be made from one of the `typewriter' symbols.  An asterisk will do; as
we enhance the graph-printing function, we can make the choice of
symbol a user option.
We can call this function graph-body-print; it will take a
numbers-list as its only argument.  At this stage, we will not
label the graph, but only print its body.
The graph-body-print function inserts a vertical column of
asterisks for each element in the numbers-list.  The height of
each line is determined by the value of that element of the
numbers-list.
Inserting columns is a repetitive act; that means that this function can
be written either with a while loop or recursively.
Our first challenge is to discover how to print a column of asterisks.
Usually, in Emacs, we print characters onto a screen horizontally,
line by line, by typing.  We have two routes we can follow: write our
own column-insertion function or discover whether one exists in Emacs.
To see whether there is one in Emacs, we can use the M-x apropos
command.  This command is like the C-h a (command-apropos)
command, except that the latter finds only those functions that are
commands.  The M-x apropos command lists all symbols that match
a regular expression, including functions that are not interactive.

What we want to look for is some command that prints or inserts
columns.  Very likely, the name of the function will contain either
the word `print' or the word `insert' or the word `column'.
Therefore, we can simply type M-x apropos RET
print\|insert\|column RET and look at the result.  On my system, this
command once too takes quite some time, and then produced a list of 79
functions and variables.  Now it does not take much time at all and
produces a list of 211 functions and variables.  Scanning down the
list, the only function that looks as if it might do the job is
insert-rectangle.
Indeed, this is the function we want; its documentation says:

insert-rectangle:
Insert text of RECTANGLE with upper left corner at point.
RECTANGLE's first line is inserted at point,
its second line is inserted at a point vertically under point, etc.
RECTANGLE should be a list of strings.
After this command, the mark is at the upper left corner
and point is at the lower right corner.
     
We can run a quick test, to make sure it does what we expect of it.
Here is the result of placing the cursor after the
insert-rectangle expression and typing C-u C-x C-e
(eval-last-sexp).  The function inserts the strings
‘"first"’, ‘"second"’, and ‘"third"’ at and below
point.  Also the function returns nil.

(insert-rectangle '("first" "second" "third"))first
                                              second
                                              thirdnil

Of course, we won't be inserting the text of the
insert-rectangle expression itself into the buffer in which we
are making the graph, but will call the function from our program.  We
shall, however, have to make sure that point is in the buffer at the
place where the insert-rectangle function will insert its
column of strings.
If you are reading this in Info, you can see how this works by
switching to another buffer, such as the *scratch* buffer,
placing point somewhere in the buffer, typing M-:, typing the
insert-rectangle expression into the minibuffer at the prompt,
and then typing RET.  This causes Emacs to evaluate the
expression in the minibuffer, but to use as the value of point the
position of point in the *scratch* buffer.  (M-:  is the
keybinding for eval-expression. Also, nil does not
appear in the *scratch* buffer since the expression is
evaluated in the minibuffer.)
We find when we do this that point ends up at the end of the last
inserted line—that is to say, this function moves point as a
side-effect.  If we were to repeat the command, with point at this
position, the next insertion would be below and to the right of the
previous insertion.  We don't want this!  If we are going to make a
bar graph, the columns need to be beside each other.
So we discover that each cycle of the column-inserting while
loop must reposition point to the place we want it, and that place
will be at the top, not the bottom, of the column.  Moreover, we
remember that when we print a graph, we do not expect all the columns
to be the same height.  This means that the top of each column may be
at a different height from the previous one.  We cannot simply
reposition point to the same line each time, but moved over to the
right—or perhaps we can…
We are planning to make the columns of the bar graph out of asterisks.
The number of asterisks in the column is the number specified by the
current element of the numbers-list.  We need to construct a
list of asterisks of the right length for each call to
insert-rectangle.  If this list consists solely of the requisite
number of asterisks, then we will have position point the right number
of lines above the base for the graph to print correctly.  This could
be difficult.
Alternatively, if we can figure out some way to pass
insert-rectangle a list of the same length each time, then we
can place point on the same line each time, but move it over one
column to the right for each new column.  If we do this, however, some
of the entries in the list passed to insert-rectangle must be
blanks rather than asterisks.  For example, if the maximum height of
the graph is 5, but the height of the column is 3, then
insert-rectangle requires an argument that looks like this:

(" " " " "*" "*" "*")

This last proposal is not so difficult, so long as we can determine
the column height.  There are two ways for us to specify the column
height: we can arbitrarily state what it will be, which would work
fine for graphs of that height; or we can search through the list of
numbers and use the maximum height of the list as the maximum height
of the graph.  If the latter operation were difficult, then the former
procedure would be easiest, but there is a function built into Emacs
that determines the maximum of its arguments.  We can use that
function.  The function is called max and it returns the
largest of all its arguments, which must be numbers.  Thus, for
example,

(max  3 4 6 5 7 3)

returns 7.  (A corresponding function called min returns the
smallest of all its arguments.)

However, we cannot simply call max on the numbers-list;
the max function expects numbers as its argument, not a list of
numbers.  Thus, the following expression,

(max  '(3 4 6 5 7 3))

produces the following error message;

Wrong type of argument:  number-or-marker-p, (3 4 6 5 7 3)

We need a function that passes a list of arguments to a function.
This function is apply.  This function `applies' its first
argument (a function) to its remaining arguments, the last of which
may be a list.
For example,

(apply 'max 3 4 7 3 '(4 8 5))

returns 8.
(Incidentally, I don't know how you would learn of this function
without a book such as this.  It is possible to discover other
functions, like search-forward or insert-rectangle, by
guessing at a part of their names and then using apropos.  Even
though its base in metaphor is clear—`apply' its first argument to
the rest—I doubt a novice would come up with that particular word
when using apropos or other aid.  Of course, I could be wrong;
after all, the function was first named by someone who had to invent
it.)
The second and subsequent arguments to apply are optional, so
we can use apply to call a function and pass the elements of a
list to it, like this, which also returns 8:

(apply 'max '(4 8 5))

This latter way is how we will use apply.  The
recursive-lengths-list-many-files function returns a numbers'
list to which we can apply max (we could also apply max to
the sorted numbers' list; it does not matter whether the list is
sorted or not.)
Hence, the operation for finding the maximum height of the graph is this:

(setq max-graph-height (apply 'max numbers-list))

Now we can return to the question of how to create a list of strings
for a column of the graph.  Told the maximum height of the graph
and the number of asterisks that should appear in the column, the
function should return a list of strings for the
insert-rectangle command to insert.
Each column is made up of asterisks or blanks.  Since the function is
passed the value of the height of the column and the number of
asterisks in the column, the number of blanks can be found by
subtracting the number of asterisks from the height of the column.
Given the number of blanks and the number of asterisks, two
while loops can be used to construct the list:

;;; First version.
(defun column-of-graph (max-graph-height actual-height)
  "Return list of strings that is one column of a graph."
  (let ((insert-list nil)
        (number-of-top-blanks
         (- max-graph-height actual-height)))

    ;; Fill in asterisks.
    (while (> actual-height 0)
      (setq insert-list (cons "*" insert-list))
      (setq actual-height (1- actual-height)))

    ;; Fill in blanks.
    (while (> number-of-top-blanks 0)
      (setq insert-list (cons " " insert-list))
      (setq number-of-top-blanks
            (1- number-of-top-blanks)))

    ;; Return whole list.
    insert-list))

If you install this function and then evaluate the following
expression you will see that it returns the list as desired:

(column-of-graph 5 3)

returns

(" " " " "*" "*" "*")

As written, column-of-graph contains a major flaw: the symbols
used for the blank and for the marked entries in the column are
`hard-coded' as a space and asterisk.  This is fine for a prototype,
but you, or another user, may wish to use other symbols.  For example,
in testing the graph function, you many want to use a period in place
of the space, to make sure the point is being repositioned properly
each time the insert-rectangle function is called; or you might
want to substitute a ‘+’ sign or other symbol for the asterisk.
You might even want to make a graph-column that is more than one
display column wide.  The program should be more flexible.  The way to
do that is to replace the blank and the asterisk with two variables
that we can call graph-blank and graph-symbol and define
those variables separately.
Also, the documentation is not well written.  These considerations
lead us to the second version of the function:

(defvar graph-symbol "*"
  "String used as symbol in graph, usually an asterisk.")

(defvar graph-blank " "
  "String used as blank in graph, usually a blank space.
graph-blank must be the same number of columns wide
as graph-symbol.")

(For an explanation of defvar, see
Initializing a Variable with defvar.)

;;; Second version.
(defun column-of-graph (max-graph-height actual-height)
  "Return MAX-GRAPH-HEIGHT strings; ACTUAL-HEIGHT are graph-symbols.

The graph-symbols are contiguous entries at the end
of the list.
The list will be inserted as one column of a graph.
The strings are either graph-blank or graph-symbol."

  (let ((insert-list nil)
        (number-of-top-blanks
         (- max-graph-height actual-height)))

    ;; Fill in graph-symbols.
    (while (> actual-height 0)
      (setq insert-list (cons graph-symbol insert-list))
      (setq actual-height (1- actual-height)))

    ;; Fill in graph-blanks.
    (while (> number-of-top-blanks 0)
      (setq insert-list (cons graph-blank insert-list))
      (setq number-of-top-blanks
            (1- number-of-top-blanks)))

    ;; Return whole list.
    insert-list))

If we wished, we could rewrite column-of-graph a third time to
provide optionally for a line graph as well as for a bar graph.  This
would not be hard to do.  One way to think of a line graph is that it
is no more than a bar graph in which the part of each bar that is
below the top is blank.  To construct a column for a line graph, the
function first constructs a list of blanks that is one shorter than
the value, then it uses cons to attach a graph symbol to the
list; then it uses cons again to attach the `top blanks' to
the list.
It is easy to see how to write such a function, but since we don't
need it, we will not do it.  But the job could be done, and if it were
done, it would be done with column-of-graph.  Even more
important, it is worth noting that few changes would have to be made
anywhere else.  The enhancement, if we ever wish to make it, is
simple.
Now, finally, we come to our first actual graph printing function.
This prints the body of a graph, not the labels for the vertical and
horizontal axes, so we can call this graph-body-print.


The graph-body-print Function




After our preparation in the preceding section, the
graph-body-print function is straightforward.  The function
will print column after column of asterisks and blanks, using the
elements of a numbers' list to specify the number of asterisks in each
column.  This is a repetitive act, which means we can use a
decrementing while loop or recursive function for the job.  In
this section, we will write the definition using a while loop.
The column-of-graph function requires the height of the graph
as an argument, so we should determine and record that as a local variable.
This leads us to the following template for the while loop
version of this function:

(defun graph-body-print (numbers-list)
  "documentation…"
  (let ((height  …
         …))

    (while numbers-list
      insert-columns-and-reposition-point
      (setq numbers-list (cdr numbers-list)))))

We need to fill in the slots of the template.
Clearly, we can use the (apply 'max numbers-list) expression to
determine the height of the graph.
The while loop will cycle through the numbers-list one
element at a time.  As it is shortened by the (setq numbers-list
(cdr numbers-list)) expression, the car of each instance of the
list is the value of the argument for column-of-graph.
At each cycle of the while loop, the insert-rectangle
function inserts the list returned by column-of-graph.  Since
the insert-rectangle function moves point to the lower right of
the inserted rectangle, we need to save the location of point at the
time the rectangle is inserted, move back to that position after the
rectangle is inserted, and then move horizontally to the next place
from which insert-rectangle is called.
If the inserted columns are one character wide, as they will be if
single blanks and asterisks are used, the repositioning command is
simply (forward-char 1); however, the width of a column may be
greater than one.  This means that the repositioning command should be
written (forward-char symbol-width).  The symbol-width
itself is the length of a graph-blank and can be found using
the expression (length graph-blank).  The best place to bind
the symbol-width variable to the value of the width of graph
column is in the varlist of the let expression.
These considerations lead to the following function definition:

(defun graph-body-print (numbers-list)
  "Print a bar graph of the NUMBERS-LIST.
The numbers-list consists of the Y-axis values."

  (let ((height (apply 'max numbers-list))
        (symbol-width (length graph-blank))
        from-position)

    (while numbers-list
      (setq from-position (point))
      (insert-rectangle
       (column-of-graph height (car numbers-list)))
      (goto-char from-position)
      (forward-char symbol-width)
      ;; Draw graph column by column.
      (sit-for 0)
      (setq numbers-list (cdr numbers-list)))
    ;; Place point for X axis labels.
    (forward-line height)
    (insert "\n")
))

The one unexpected expression in this function is the
(sit-for 0) expression in the while loop.  This
expression makes the graph printing operation more interesting to
watch than it would be otherwise.  The expression causes Emacs to
`sit' or do nothing for a zero length of time and then redraw the
screen.  Placed here, it causes Emacs to redraw the screen column by
column.  Without it, Emacs would not redraw the screen until the
function exits.
We can test graph-body-print with a short list of numbers.
	Install graph-symbol, graph-blank,
column-of-graph, which are in
and graph-body-print.

	Copy the following expression:

(graph-body-print '(1 2 3 4 6 4 3 5 7 6 5 2 3))


	Switch to the *scratch* buffer and place the cursor where you
want the graph to start.

	Type M-: (eval-expression).

	Yank the graph-body-print expression into the minibuffer
with C-y (yank).

	Press RET to evaluate the graph-body-print expression.



Emacs will print a graph like this:

                    *
                *   **
                *  ****
               *** ****
              ********* *
             ************
            *************


The recursive-graph-body-print Function




The graph-body-print function may also be written recursively.
The recursive solution is divided into two parts: an outside `wrapper'
that uses a let expression to determine the values of several
variables that need only be found once, such as the maximum height of
the graph, and an inside function that is called recursively to print
the graph.
The `wrapper' is uncomplicated:

(defun recursive-graph-body-print (numbers-list)
  "Print a bar graph of the NUMBERS-LIST.
The numbers-list consists of the Y-axis values."
  (let ((height (apply 'max numbers-list))
        (symbol-width (length graph-blank))
        from-position)
    (recursive-graph-body-print-internal
     numbers-list
     height
     symbol-width)))

The recursive function is a little more difficult.  It has four parts:
the `do-again-test', the printing code, the recursive call, and the
`next-step-expression'.  The `do-again-test' is a when
expression that determines whether the numbers-list contains
any remaining elements; if it does, the function prints one column of
the graph using the printing code and calls itself again.  The
function calls itself again according to the value produced by the
`next-step-expression' which causes the call to act on a shorter
version of the numbers-list.

(defun recursive-graph-body-print-internal
  (numbers-list height symbol-width)
  "Print a bar graph.
Used within recursive-graph-body-print function."

  (when numbers-list
        (setq from-position (point))
        (insert-rectangle
         (column-of-graph height (car numbers-list)))
        (goto-char from-position)
        (forward-char symbol-width)
        (sit-for 0)     ; Draw graph column by column.
        (recursive-graph-body-print-internal
         (cdr numbers-list) height symbol-width)))

After installation, this expression can be tested; here is a sample:

(recursive-graph-body-print '(3 2 5 6 7 5 3 4 6 4 3 2 1))

Here is what recursive-graph-body-print produces:

                *
               **   *
              ****  *
              **** ***
            * *********
            ************
            *************

Either of these two functions, graph-body-print or
recursive-graph-body-print, create the body of a graph.

Need for Printed Axes



A graph needs printed axes, so you can orient yourself.  For a do-once
project, it may be reasonable to draw the axes by hand using Emacs'
Picture mode; but a graph drawing function may be used more than once.
For this reason, I have written enhancements to the basic
print-graph-body function that automatically print labels for
the horizontal and vertical axes.  Since the label printing functions
do not contain much new material, I have placed their description in
an appendix.  See A Graph with Labelled Axes.

Exercise



Write a line graph version of the graph printing functions.

Chapter 16. Your .emacs File




“You don't have to like Emacs to like it” – this seemingly
paradoxical statement is the secret of GNU Emacs.  The plain, `out of
the box' Emacs is a generic tool.  Most people who use it, customize
it to suit themselves.
GNU Emacs is mostly written in Emacs Lisp; this means that by writing
expressions in Emacs Lisp you can change or extend Emacs.
Emacs' Default Configuration



There are those who appreciate Emacs' default configuration.  After
all, Emacs starts you in C mode when you edit a C file, starts you in
Fortran mode when you edit a Fortran file, and starts you in
Fundamental mode when you edit an unadorned file.  This all makes
sense, if you do not know who is going to use Emacs.  Who knows what a
person hopes to do with an unadorned file?  Fundamental mode is the
right default for such a file, just as C mode is the right default for
editing C code.  (Enough programming languages have syntaxes
that enable them to share or nearly share features, so C mode is
now provided by CC mode, the `C Collection'.)
But when you do know who is going to use Emacs—you,
yourself—then it makes sense to customize Emacs.
For example, I seldom want Fundamental mode when I edit an
otherwise undistinguished file; I want Text mode.  This is why I
customize Emacs: so it suits me.
You can customize and extend Emacs by writing or adapting a
~/.emacs file.  This is your personal initialization file; its
contents, written in Emacs Lisp, tell Emacs what to do.[14]
A ~/.emacs file contains Emacs Lisp code.  You can write this
code yourself; or you can use Emacs' customize feature to write
the code for you.  You can combine your own expressions and
auto-written Customize expressions in your .emacs file.
(I myself prefer to write my own expressions, except for those,
particularly fonts, that I find easier to manipulate using the
customize command.  I combine the two methods.)
Most of this chapter is about writing expressions yourself.  It
describes a simple .emacs file; for more information, see
See section ``The Init File'' in The GNU Emacs Manual, and
See section ``The Init File'' in The GNU Emacs Lisp Reference Manual.



[14] You
may also add .el to ~/.emacs and call it a
~/.emacs.el file.  In the past, you were forbidden to type the
extra keystrokes that the name ~/.emacs.el requires, but now
you may.  The new format is consistent with the Emacs Lisp file
naming conventions; the old format saves typing.



Site-wide Initialization Files



In addition to your personal initialization file, Emacs automatically
loads various site-wide initialization files, if they exist.  These
have the same form as your .emacs file, but are loaded by
everyone.
Two site-wide initialization files, site-load.el and
site-init.el, are loaded into Emacs and then `dumped' if a
`dumped' version of Emacs is created, as is most common.  (Dumped
copies of Emacs load more quickly.  However, once a file is loaded and
dumped, a change to it does not lead to a change in Emacs unless you
load it yourself or re-dump Emacs.  See See section ``Building Emacs'' in The GNU Emacs Lisp Reference Manual, and the
INSTALL file.)
Three other site-wide initialization files are loaded automatically
each time you start Emacs, if they exist.  These are
site-start.el, which is loaded before your .emacs
file, and default.el, and the terminal type file, which are both
loaded after your .emacs file.
Settings and definitions in your .emacs file will overwrite
conflicting settings and definitions in a site-start.el file,
if it exists; but the settings and definitions in a default.el
or terminal type file will overwrite those in your .emacs file.
(You can prevent interference from a terminal type file by setting
term-file-prefix to nil.  See A Simple Extension.)
The INSTALL file that comes in the distribution contains
descriptions of the site-init.el and site-load.el files.
The loadup.el, startup.el, and loaddefs.el files
control loading.  These files are in the lisp directory of the
Emacs distribution and are worth perusing.
The loaddefs.el file contains a good many suggestions as to
what to put into your own .emacs file, or into a site-wide
initialization file.

Specifying Variables using defcustom




You can specify variables using defcustom so that you and
others can then use Emacs' customize feature to set their
values.  (You cannot use customize to write function
definitions; but you can write defuns in your .emacs
file.  Indeed, you can write any Lisp expression in your .emacs
file.)
The customize feature depends on the defcustom special
form.  Although you can use defvar or setq for variables
that users set, the defcustom special form is designed for the
job.
You can use your knowledge of defvar for writing the
first three arguments for defcustom.  The first argument to
defcustom is the name of the variable.  The second argument is
the variable's initial value, if any; and this value is set only if
the value has not already been set.  The third argument is the
documentation.
The fourth and subsequent arguments to defcustom specify types
and options; these are not featured in defvar.  (These
arguments are optional.)
Each of these arguments consists of a keyword followed by a value.
Each keyword starts with the colon character ‘:’.
For example, the customizable user option variable
text-mode-hook looks like this:

(defcustom text-mode-hook nil
  "Normal hook run when entering Text mode and many related modes."
  :type 'hook
  :options '(turn-on-auto-fill flyspell-mode)
  :group 'data)
     
The name of the variable is text-mode-hook; it has no default
value; and its documentation string tells you what it does.
The :type keyword tells Emacs the kind of data to which
text-mode-hook should be set and how to display the value in a
Customization buffer.
The :options keyword specifies a suggested list of values for
the variable.  Usually, :options applies to a hook.
The list is only a suggestion; it is not exclusive; a person who sets
the variable may set it to other values; the list shown following the
:options keyword is intended to offer convenient choices to a
user.
Finally, the :group keyword tells the Emacs Customization
command in which group the variable is located.  This tells where to
find it.
The defcustom function recognizes more than a dozen keywords.
For more information, see See section ``Writing Customization Definitions'' in The GNU Emacs Lisp Reference Manual.
Consider text-mode-hook as an example.
There are two ways to customize this variable.  You can use the
customization command or write the appropriate expressions yourself.
Using the customization command,  you can type:

M-x customize

and find that the group for editing files of data is called `data'.
Enter that group.  Text Mode Hook is the first member.  You can click
on its various options, such as turn-on-auto-fill, to set the
values.  After you click on the button to

Save for Future Sessions

Emacs will write an expression into your .emacs file.
It will look like this:

(custom-set-variables
  ;; custom-set-variables was added by Custom.
  ;; If you edit it by hand, you could mess it up, so be careful.
  ;; Your init file should contain only one such instance.
  ;; If there is more than one, they won't work right.
 '(text-mode-hook (quote (turn-on-auto-fill text-mode-hook-identify))))

(The text-mode-hook-identify function tells
toggle-text-mode-auto-fill which buffers are in Text mode.
It comes on automatically.)
The custom-set-variables function works somewhat differently
than a setq.  While I have never learned the differences, I
modify the custom-set-variables expressions in my .emacs
file by hand:  I make the changes in what appears to me to be a
reasonable manner and have not had any problems.  Others prefer to use
the Customization command and let Emacs do the work for them.
Another custom-set-… function is custom-set-faces.
This function sets the various font faces.  Over time, I have set a
considerable number of faces.  Some of the time, I re-set them using
customize; other times, I simply edit the
custom-set-faces expression in my .emacs file itself.
The second way to customize your text-mode-hook is to set it
yourself in your .emacs file using code that has nothing to do
with the custom-set-… functions.
When you do this, and later use customize, you will see a
message that says

CHANGED outside Customize; operating on it here may be unreliable.

This message is only a warning.  If you click on the button to

Save for Future Sessions

Emacs will write a custom-set-… expression near the end
of your .emacs file that will be evaluated after your
hand-written expression.  It will, therefore, overrule your
hand-written expression.  No harm will be done.  When you do this,
however, be careful to remember which expression is active; if you
forget, you may confuse yourself.
So long as you remember where the values are set, you will have no
trouble.  In any event, the values are always set in your
initialization file, which is usually called .emacs.
I myself use customize for hardly anything.  Mostly, I write
expressions myself.
Incidentally, to be more complete concerning defines:  defsubst
defines an inline function.  The syntax is just like that of
defun.  defconst defines a symbol as a constant.  The
intent is that neither programs nor users should ever change a value
set by defconst.  (You can change it; the value set is a
variable; but please do not.)

Beginning a .emacs File




When you start Emacs, it loads your .emacs file unless you tell
it not to by specifying ‘-q’ on the command line.  (The
emacs -q command gives you a plain, out-of-the-box Emacs.)
A .emacs file contains Lisp expressions.  Often, these are no
more than expressions to set values; sometimes they are function
definitions.
See See section ``The Init File @file{~/.emacs}'' in The GNU EmacsManual, for a short description of initialization files.
This chapter goes over some of the same ground, but is a walk among
extracts from a complete, long-used .emacs file—my own.
The first part of the file consists of comments: reminders to myself.
By now, of course, I remember these things, but when I started, I did
not.

;;;; Bob's .emacs file
; Robert J. Chassell
; 26 September 1985

Look at that date!  I started this file a long time ago.  I have been
adding to it ever since.

; Each section in this file is introduced by a
; line beginning with four semicolons; and each
; entry is introduced by a line beginning with
; three semicolons.

This describes the usual conventions for comments in Emacs Lisp.
Everything on a line that follows a semicolon is a comment.  Two,
three, and four semicolons are used as subsection and section markers.
(See See section ``Comments'' in The GNU Emacs Lisp Reference Manual, for
more about comments.)

;;;; The Help Key
; Control-h is the help key;
; after typing control-h, type a letter to
; indicate the subject about which you want help.
; For an explanation of the help facility,
; type control-h two times in a row.

Just remember: type C-h two times for help.

; To find out about any mode, type control-h m
; while in that mode.  For example, to find out
; about mail mode, enter mail mode and then type
; control-h m.

`Mode help', as I call this, is very helpful.  Usually, it tells you
all you need to know.
Of course, you don't need to include comments like these in your
.emacs file.  I included them in mine because I kept forgetting
about Mode help or the conventions for comments—but I was able to
remember to look here to remind myself.

Text and Auto Fill Mode



Now we come to the part that `turns on' Text mode and
Auto Fill mode.

;;; Text mode and Auto Fill mode
;; The next two lines put Emacs into Text mode
;; and Auto Fill mode, and are for writers who
;; want to start writing prose rather than code.
(setq-default major-mode 'text-mode)
(add-hook 'text-mode-hook 'turn-on-auto-fill)

Here is the first part of this .emacs file that does something
besides remind a forgetful human!
The first of the two lines in parentheses tells Emacs to turn on Text
mode when you find a file, unless that file should go into some
other mode, such as C mode.
When Emacs reads a file, it looks at the extension to the file name,
if any.  (The extension is the part that comes after a ‘.’.)  If
the file ends with a ‘.c’ or ‘.h’ extension then Emacs turns
on C mode.  Also, Emacs looks at first nonblank line of the file; if
the line says ‘-*- C -*-’, Emacs turns on C mode.  Emacs
possesses a list of extensions and specifications that it uses
automatically.  In addition, Emacs looks near the last page for a
per-buffer, “local variables list”, if any.
Now, back to the .emacs file.
Here is the line again; how does it work?


(setq major-mode 'text-mode)

This line is a short, but complete Emacs Lisp expression.
We are already familiar with setq.  It sets the following variable,
major-mode, to the subsequent value, which is text-mode.
The single quote mark before text-mode tells Emacs to deal directly
with the text-mode symbol, not with whatever it might stand for.
See Setting the Value of a Variable,
for a reminder of how setq works.
The main point is that there is no difference between the procedure you
use to set a value in your .emacs file and the procedure you use
anywhere else in Emacs.
Here is the next line:


(add-hook 'text-mode-hook 'turn-on-auto-fill)

In this line, the add-hook command adds
turn-on-auto-fill to the variable.
turn-on-auto-fill is the name of a program, that, you guessed
it!, turns on Auto Fill mode.
Every time Emacs turns on Text mode, Emacs runs the commands `hooked'
onto Text mode.  So every time Emacs turns on Text mode, Emacs also
turns on Auto Fill mode.
In brief, the first line causes Emacs to enter Text mode when you edit a
file, unless the file name extension, a first non-blank line, or local
variables to tell Emacs otherwise.
Text mode among other actions, sets the syntax table to work
conveniently for writers.  In Text mode, Emacs considers an apostrophe
as part of a word like a letter; but Emacs does not consider a period
or a space as part of a word.  Thus, M-f moves you over
‘it's’.  On the other hand, in C mode, M-f stops just after
the ‘t’ of ‘it's’.
The second line causes Emacs to turn on Auto Fill mode when it turns
on Text mode.  In Auto Fill mode, Emacs automatically breaks a line
that is too wide and brings the excessively wide part of the line down
to the next line.  Emacs breaks lines between words, not within them.
When Auto Fill mode is turned off, lines continue to the right as you
type them.  Depending on how you set the value of
truncate-lines, the words you type either disappear off the
right side of the screen, or else are shown, in a rather ugly and
unreadable manner, as a continuation line on the screen.
In addition, in this part of my .emacs file, I tell the Emacs
fill commands to insert two spaces after a colon:

(setq colon-double-space t)


Mail Aliases



Here is a setq that `turns on' mail aliases, along with more
reminders.

;;; Mail mode
; To enter mail mode, type `C-x m'
; To enter RMAIL (for reading mail),
; type `M-x rmail'
(setq mail-aliases t)

This setq command sets the value of the variable
mail-aliases to t.  Since t means true, the line
says, in effect, “Yes, use mail aliases.”
Mail aliases are convenient short names for long email addresses or
for lists of email addresses.  The file where you keep your `aliases'
is ~/.mailrc.  You write an alias like this:

alias geo george@foobar.wiz.edu

When you write a message to George, address it to ‘geo’; the
mailer will automatically expand ‘geo’ to the full address.

Indent Tabs Mode




By default, Emacs inserts tabs in place of multiple spaces when it
formats a region.  (For example, you might indent many lines of text
all at once with the indent-region command.)  Tabs look fine on
a terminal or with ordinary printing, but they produce badly indented
output when you use TeX or Texinfo since TeX ignores tabs.
The following turns off Indent Tabs mode:

;;; Prevent Extraneous Tabs
(setq-default indent-tabs-mode nil)

Note that this line uses setq-default rather than the
setq command that we have seen before.  The setq-default
command sets values only in buffers that do not have their own local
values for the variable.

Some Keybindings



Now for some personal keybindings:

;;; Compare windows
(global-set-key "\C-cw" 'compare-windows)

compare-windows is a nifty command that compares the text in
your current window with text in the next window.  It makes the
comparison by starting at point in each window, moving over text in
each window as far as they match.  I use this command all the time.
This also shows how to set a key globally, for all modes.
The command is global-set-key.  It is followed by the
keybinding.  In a .emacs file, the keybinding is written as
shown: \C-c stands for `control-c', which means `press the
control key and the c key at the same time'.  The w means
`press the w key'.  The keybinding is surrounded by double
quotation marks.  In documentation, you would write this as
C-c w.  (If you were binding a META key, such as
M-c, rather than a CTRL key, you would write
\M-c in your .emacs file.  See See section ``Rebinding Keys in Your Init File'' in The GNU Emacs Manual, for
details.)
The command invoked by the keys is compare-windows.  Note that
compare-windows is preceded by a single quote; otherwise, Emacs
would first try to evaluate the symbol to determine its value.
These three things, the double quotation marks, the backslash before
the ‘C’, and the single quote mark are necessary parts of
keybinding that I tend to forget.  Fortunately, I have come to
remember that I should look at my existing .emacs file, and
adapt what is there.
As for the keybinding itself: C-c w.  This combines the prefix
key, C-c, with a single character, in this case, w.  This
set of keys, C-c followed by a single character, is strictly
reserved for individuals' own use.  (I call these `own' keys, since
these are for my own use.)  You should always be able to create such a
keybinding for your own use without stomping on someone else's
keybinding.  If you ever write an extension to Emacs, please avoid
taking any of these keys for public use.  Create a key like C-c
C-w instead.  Otherwise, we will run out of `own' keys.
Here is another keybinding, with a comment:

;;; Keybinding for `occur'
; I use occur a lot, so let's bind it to a key:
(global-set-key "\C-co" 'occur)

The occur command shows all the lines in the current buffer
that contain a match for a regular expression.  Matching lines are
shown in a buffer called *Occur*.  That buffer serves as a menu
to jump to occurrences.
Here is how to unbind a key, so it does not
work:

;;; Unbind `C-x f'
(global-unset-key "\C-xf")

There is a reason for this unbinding: I found I inadvertently typed
C-x f when I meant to type C-x C-f.  Rather than find a
file, as I intended, I accidentally set the width for filled text,
almost always to a width I did not want.  Since I hardly ever reset my
default width, I simply unbound the key.
The following rebinds an existing key:

;;; Rebind `C-x C-b' for `buffer-menu'
(global-set-key "\C-x\C-b" 'buffer-menu)

By default, C-x C-b runs the
list-buffers command.  This command lists
your buffers in another window.  Since I
almost always want to do something in that
window, I prefer the  buffer-menu
command, which not only lists the buffers,
but moves point into that window.

Keymaps




Emacs uses keymaps to record which keys call which commands.
When you use global-set-key to set the keybinding for a single
command in all parts of Emacs, you are specifying the keybinding in
current-global-map.
Specific modes, such as C mode or Text mode, have their own keymaps;
the mode-specific keymaps override the global map that is shared by
all buffers.
The global-set-key function binds, or rebinds, the global
keymap.  For example, the following binds the key C-x C-b to the
function buffer-menu:

(global-set-key "\C-x\C-b" 'buffer-menu)

Mode-specific keymaps are bound using the define-key function,
which takes a specific keymap as an argument, as well as the key and
the command.  For example, my .emacs file contains the
following expression to bind the texinfo-insert-@group command
to C-c C-c g:

(define-key texinfo-mode-map "\C-c\C-cg" 'texinfo-insert-@group)

The texinfo-insert-@group function itself is a little extension
to Texinfo mode that inserts ‘@group’ into a Texinfo file.  I
use this command all the time and prefer to type the three strokes
C-c C-c g rather than the six strokes @ g r o u p.
(‘@group’ and its matching ‘@end group’ are commands that
keep all enclosed text together on one page; many multi-line examples
in this book are surrounded by ‘@group … @end group’.)
Here is the texinfo-insert-@group function definition:

(defun texinfo-insert-@group ()
  "Insert the string @group in a Texinfo buffer."
  (interactive)
  (beginning-of-line)
  (insert "@group\n"))

(Of course, I could have used Abbrev mode to save typing, rather than
write a function to insert a word; but I prefer key strokes consistent
with other Texinfo mode key bindings.)
You will see numerous define-key expressions in
loaddefs.el as well as in the various mode libraries, such as
cc-mode.el and lisp-mode.el.
See See section ``Customizing Key Bindings'' in The GNU Emacs Manual, and See section ``Keymaps'' in The GNU Emacs Lisp Reference Manual, for more information about keymaps.

Loading Files





Many people in the GNU Emacs community have written extensions to
Emacs.  As time goes by, these extensions are often included in new
releases.  For example, the Calendar and Diary packages are now part
of the standard GNU Emacs, as is Calc.
You can use a load command to evaluate a complete file and
thereby install all the functions and variables in the file into Emacs.
For example:

(load "~/emacs/slowsplit")

This evaluates, i.e. loads, the slowsplit.el file or if it
exists, the faster, byte compiled slowsplit.elc file from the
emacs sub-directory of your home directory.  The file contains
the function split-window-quietly, which John Robinson wrote in
1989.
The split-window-quietly function splits a window with the
minimum of redisplay.  I installed it in 1989 because it worked well
with the slow 1200 baud terminals I was then using.  Nowadays, I only
occasionally come across such a slow connection, but I continue to use
the function because I like the way it leaves the bottom half of a
buffer in the lower of the new windows and the top half in the upper
window.
To replace the key binding for the default
split-window-vertically, you must also unset that key and bind
the keys to split-window-quietly, like this:

(global-unset-key "\C-x2")
(global-set-key "\C-x2" 'split-window-quietly)

If you load many extensions, as I do, then instead of specifying the
exact location of the extension file, as shown above, you can specify
that directory as part of Emacs' load-path.  Then, when Emacs
loads a file, it will search that directory as well as its default
list of directories.  (The default list is specified in paths.h
when Emacs is built.)
The following command adds your ~/emacs directory to the
existing load path:

;;; Emacs Load Path
(setq load-path (cons "~/emacs" load-path))

Incidentally, load-library is an interactive interface to the
load function.  The complete function looks like this:


(defun load-library (library)
  "Load the library named LIBRARY.
This is an interface to the function `load'."
  (interactive
   (list (completing-read "Load library: "
			  (apply-partially 'locate-file-completion-table
                                           load-path
                                           (get-load-suffixes)))))
  (load library))

The name of the function, load-library, comes from the use of
`library' as a conventional synonym for `file'.  The source for the
load-library command is in the files.el library.
Another interactive command that does a slightly different job is
load-file.  See See section ``Libraries of Lisp Code for Emacs'' in The GNU Emacs Manual, for information on the
distinction between load-library and this command.

Autoloading




Instead of installing a function by loading the file that contains it,
or by evaluating the function definition, you can make the function
available but not actually install it until it is first called.  This
is called autoloading.
When you execute an autoloaded function, Emacs automatically evaluates
the file that contains the definition, and then calls the function.
Emacs starts quicker with autoloaded functions, since their libraries
are not loaded right away; but you need to wait a moment when you
first use such a function, while its containing file is evaluated.
Rarely used functions are frequently autoloaded.  The
loaddefs.el library contains hundreds of autoloaded functions,
from bookmark-set to wordstar-mode.  Of course, you may
come to use a `rare' function frequently.  When you do, you should
load that function's file with a load expression in your
.emacs file.
In my .emacs file, I load 14 libraries that contain functions
that would otherwise be autoloaded.  (Actually, it would have been
better to include these files in my `dumped' Emacs, but I forgot.
See See section ``Building Emacs'' in The GNU Emacs Lisp Reference Manual, and the INSTALL file for more about
dumping.)
You may also want to include autoloaded expressions in your .emacs
file.  autoload is a built-in function that takes up to five
arguments, the final three of which are optional.  The first argument
is the name of the function to be autoloaded; the second is the name
of the file to be loaded.  The third argument is documentation for the
function, and the fourth tells whether the function can be called
interactively.  The fifth argument tells what type of
object—autoload can handle a keymap or macro as well as a
function (the default is a function).
Here is a typical example:

(autoload 'html-helper-mode
  "html-helper-mode" "Edit HTML documents" t)

(html-helper-mode is an older alternative to html-mode,
which is a standard part of the distribution.)
This expression autoloads the html-helper-mode function.  It
takes it from the html-helper-mode.el file (or from the byte
compiled version html-helper-mode.elc, if that exists.)  The
file must be located in a directory specified by load-path.
The documentation says that this is a mode to help you edit documents
written in the HyperText Markup Language.  You can call this mode
interactively by typing M-x html-helper-mode.  (You need to
duplicate the function's regular documentation in the autoload
expression because the regular function is not yet loaded, so its
documentation is not available.)
See See section ``Autoload'' in The GNU Emacs Lisp Reference Manual, for more information.

A Simple Extension: line-to-top-of-window




Here is a simple extension to Emacs that moves the line point is on to
the top of the window.  I use this all the time, to make text easier
to read.
You can put the following code into a separate file and then load it
from your .emacs file, or you can include it within your
.emacs file.
Here is the definition:

;;; Line to top of window;
;;; replace three keystroke sequence  C-u 0 C-l
(defun line-to-top-of-window ()
  "Move the line point is on to top of window."
  (interactive)
  (recenter 0))

Now for the keybinding.
Nowadays, function keys as well as mouse button events and
non-ascii characters are written within square brackets, without
quotation marks.  (In Emacs version 18 and before, you had to write
different function key bindings for each different make of terminal.)
I bind line-to-top-of-window to my F6 function key like
this:

(global-set-key [f6] 'line-to-top-of-window)

For more information, see See section ``Rebinding Keys in Your Init File'' in The GNU Emacs Manual.
If you run two versions of GNU Emacs, such as versions 22 and 23, and
use one .emacs file, you can select which code to evaluate with
the following conditional:

(cond
 ((= 22 emacs-major-version)
  ;; evaluate version 22 code
  ( … ))
 ((= 23 emacs-major-version)
  ;; evaluate version 23 code
  ( … )))

For example, in contrast to version 20, more recent versions blink
their cursors by default.  I hate such blinking, as well as other
features, so I placed the following in my .emacs
file[15]:

(when (>= emacs-major-version 21)
  (blink-cursor-mode 0)
  ;; Insert newline when you press `C-n' (next-line)
  ;; at the end of the buffer
  (setq next-line-add-newlines t)
  ;; Turn on image viewing
  (auto-image-file-mode t)
  ;; Turn on menu bar (this bar has text)
  ;; (Use numeric argument to turn on)
  (menu-bar-mode 1)
  ;; Turn off tool bar (this bar has icons)
  ;; (Use numeric argument to turn on)
  (tool-bar-mode nil)
  ;; Turn off tooltip mode for tool bar
  ;; (This mode causes icon explanations to pop up)
  ;; (Use numeric argument to turn on)
  (tooltip-mode nil)
  ;; If tooltips turned on, make tips appear promptly
  (setq tooltip-delay 0.1)  ; default is 0.7 second
   )



[15] When I start instances of Emacs that do not load my
.emacs file or any site file, I also turn off blinking:


emacs -q --no-site-file -eval '(blink-cursor-mode nil)'

Or nowadays, using an even more sophisticated set of options,

emacs -Q - D




X11 Colors



You can specify colors when you use Emacs with the MIT X Windowing
system.
I dislike the default colors and specify my own.
Here are the expressions in my .emacs
file that set values:

;; Set cursor color
(set-cursor-color "white")

;; Set mouse color
(set-mouse-color "white")

;; Set foreground and background
(set-foreground-color "white")
(set-background-color "darkblue")

;;; Set highlighting colors for isearch and drag
(set-face-foreground 'highlight "white")
(set-face-background 'highlight "blue")

(set-face-foreground 'region "cyan")
(set-face-background 'region "blue")

(set-face-foreground 'secondary-selection "skyblue")
(set-face-background 'secondary-selection "darkblue")

;; Set calendar highlighting colors
(setq calendar-load-hook
      '(lambda ()
         (set-face-foreground 'diary-face   "skyblue")
         (set-face-background 'holiday-face "slate blue")
         (set-face-foreground 'holiday-face "white")))

The various shades of blue soothe my eye and prevent me from seeing
the screen flicker.
Alternatively, I could have set my specifications in various X
initialization files.  For example, I could set the foreground,
background, cursor, and pointer (i.e., mouse) colors in my
~/.Xresources file like this:

Emacs*foreground:   white
Emacs*background:   darkblue
Emacs*cursorColor:  white
Emacs*pointerColor: white

In any event, since it is not part of Emacs, I set the root color of
my X window in my ~/.xinitrc file, like this[16]:

xsetroot -solid Navy -fg white &amp;



[16] I also
run more modern window managers, such as Enlightenment, Gnome, or KDE;
in those cases, I often specify an image rather than a plain color.



Miscellaneous Settings for a .emacs File



Here are a few miscellaneous settings:
	Set the shape and color of the mouse cursor:

; Cursor shapes are defined in
; `/usr/include/X11/cursorfont.h';
; for example, the `target' cursor is number 128;
; the `top_left_arrow' cursor is number 132.

(let ((mpointer (x-get-resource "*mpointer"
                                "*emacs*mpointer")))
  ;; If you have not set your mouse pointer
  ;;     then set it, otherwise leave as is:
  (if (eq mpointer nil)
      (setq mpointer "132")) ; top_left_arrow
  (setq x-pointer-shape (string-to-int mpointer))
  (set-mouse-color "white"))


	Or you can set the values of a variety of features in an alist, like
this:

(setq-default
 default-frame-alist
 '((cursor-color . "white")
   (mouse-color . "white")
   (foreground-color . "white")
   (background-color . "DodgerBlue4")
   ;; (cursor-type . bar)
   (cursor-type . box)
   (tool-bar-lines . 0)
   (menu-bar-lines . 1)
   (width . 80)
   (height . 58)
   (font .
         "-Misc-Fixed-Medium-R-Normal--20-200-75-75-C-100-ISO8859-1")
   ))


	Convert CTRL-h into DEL and DEL
into CTRL-h.
(Some older keyboards needed this, although I have not seen the
problem recently.)

;; Translate `C-h' to <DEL>.
; (keyboard-translate ?\C-h ?\C-?)

;; Translate <DEL> to `C-h'.
(keyboard-translate ?\C-? ?\C-h)


	Turn off a blinking cursor!

(if (fboundp 'blink-cursor-mode)
    (blink-cursor-mode -1))

or start GNU Emacs with the command emacs -nbc.

	When using `grep'
‘-i’     Ignore case distinctions
‘-n’     Prefix each line of output with line number
‘-H’     Print the filename for each match.
‘-e’     Protect patterns beginning with a hyphen character, ‘-’

(setq grep-command "grep -i -nH -e ")


	Find an existing buffer, even if it has a different name
This avoids problems with symbolic links.

(setq find-file-existing-other-name t)


	Set your language environment and default input method

(set-language-environment "latin-1")
;; Remember you can enable or disable multilingual text input
;; with the toggle-input-method' (C-\) command
(setq default-input-method "latin-1-prefix")

If you want to write with Chinese `GB' characters, set this instead:

(set-language-environment "Chinese-GB")
(setq default-input-method "chinese-tonepy")




Fixing Unpleasant Key Bindings

Some systems bind keys unpleasantly.  Sometimes, for example, the
CTRL key appears in an awkward spot rather than at the far left
of the home row.
Usually, when people fix these sorts of keybindings, they do not
change their ~/.emacs file.  Instead, they bind the proper keys
on their consoles with the loadkeys or install-keymap
commands in their boot script and then include xmodmap commands
in their .xinitrc or .Xsession file for X Windows.
For a boot script:

loadkeys /usr/share/keymaps/i386/qwerty/emacs2.kmap.gz
or
install-keymap emacs2

For a .xinitrc or .Xsession file when the Caps
Lock key is at the far left of the home row:

# Bind the key labeled `Caps Lock' to `Control'
# (Such a broken user interface suggests that keyboard manufacturers
# think that computers are typewriters from 1885.)

xmodmap -e "clear Lock"
xmodmap -e "add Control = Caps_Lock"

In a .xinitrc or .Xsession file, to convert an ALT
key to a META key:

# Some ill designed keyboards have a key labeled ALT and no Meta
xmodmap -e "keysym Alt_L = Meta_L Alt_L"


A Modified Mode Line




Finally, a feature I really like: a modified mode line.
When I work over a network, I forget which machine I am using.  Also,
I tend to I lose track of where I am, and which line point is on.
So I reset my mode line to look like this:

-:-- foo.texi   rattlesnake:/home/bob/  Line 1  (Texinfo Fill) Top

I am visiting a file called foo.texi, on my machine
rattlesnake in my /home/bob buffer.  I am on line 1, in
Texinfo mode, and am at the top of the buffer.
My .emacs file has a section that looks like this:

;; Set a Mode Line that tells me which machine, which directory,
;; and which line I am on, plus the other customary information.
(setq-default mode-line-format
 (quote
  (#("-" 0 1
     (help-echo
      "mouse-1: select window, mouse-2: delete others ..."))
   mode-line-mule-info
   mode-line-modified
   mode-line-frame-identification
   "    "
   mode-line-buffer-identification
   "    "
   (:eval (substring
           (system-name) 0 (string-match "\\..+" (system-name))))
   ":"
   default-directory
   #(" " 0 1
     (help-echo
      "mouse-1: select window, mouse-2: delete others ..."))
   (line-number-mode " Line %l ")
   global-mode-string
   #("   %[(" 0 6
     (help-echo
      "mouse-1: select window, mouse-2: delete others ..."))
   (:eval (mode-line-mode-name))
   mode-line-process
   minor-mode-alist
   #("%n" 0 2 (help-echo "mouse-2: widen" local-map (keymap ...)))
   ")%] "
   (-3 . "%P")
   ;;   "-%-"
   )))

Here, I redefine the default mode line.  Most of the parts are from
the original; but I make a few changes.  I set the default mode
line format so as to permit various modes, such as Info, to override
it.
Many elements in the list are self-explanatory:
mode-line-modified is a variable that tells whether the buffer
has been modified, mode-name tells the name of the mode, and so
on.  However, the format looks complicated because of two features we
have not discussed.
The first string in the mode line is a dash or hyphen, ‘-’.  In
the old days, it would have been specified simply as "-".  But
nowadays, Emacs can add properties to a string, such as highlighting
or, as in this case, a help feature.  If you place your mouse cursor
over the hyphen, some help information appears (By default, you must
wait seven-tenths of a second before the information appears.  You can
change that timing by changing the value of tooltip-delay.)
The new string format has a special syntax:

#("-" 0 1 (help-echo "mouse-1: select window, ..."))

The #( begins a list.  The first element of the list is the
string itself, just one ‘-’.  The second and third
elements specify the range over which the fourth element applies.  A
range starts after a character, so a zero means the range
starts just before the first character; a 1 means that the range ends
just after the first character.  The third element is the property for
the range.  It consists of a property list,  a
property name, in this case, ‘help-echo’, followed by a value, in this
case, a string.  The second, third, and fourth elements of this new
string format can be repeated.
See See section ``Text Properties'' in The GNU Emacs Lisp Reference Manual, and see See section ``Mode Line Format'' in The GNU Emacs Lisp Reference Manual, for more information.
mode-line-buffer-identification
displays the current buffer name.  It is a list
beginning (#("%12b" 0 4 ….
The #( begins the list.
The ‘"%12b"’ displays the current buffer name, using the
buffer-name function with which we are familiar; the `12'
specifies the maximum number of characters that will be displayed.
When a name has fewer characters, whitespace is added to fill out to
this number.  (Buffer names can and often should be longer than 12
characters; this length works well in a typical 80 column wide
window.)
:eval says to evaluate the following form and use the result as
a string to display.  In this case, the expression displays the first
component of the full system name.  The end of the first component is
a ‘.’ (`period'), so I use the string-match function to
tell me the length of the first component.  The substring from the
zeroth character to that length is the name of the machine.
This is the expression:

(:eval (substring
        (system-name) 0 (string-match "\\..+" (system-name))))

‘%[’ and ‘%]’ cause a pair of square brackets
to appear for each recursive editing level.  ‘%n’ says `Narrow'
when narrowing is in effect.  ‘%P’ tells you the percentage of
the buffer that is above the bottom of the window, or `Top', `Bottom',
or `All'.  (A lower case ‘p’ tell you the percentage above the
top of the window.)  ‘%-’ inserts enough dashes to fill
out the line.
Remember, “You don't have to like Emacs to like it” — your own
Emacs can have different colors, different commands, and different
keys than a default Emacs.
On the other hand, if you want to bring up a plain `out of the box'
Emacs, with no customization, type:

emacs -q

This will start an Emacs that does not load your
~/.emacs initialization file.  A plain, default Emacs.  Nothing
more.

Chapter 17. Debugging




GNU Emacs has two debuggers, debug and edebug.  The
first is built into the internals of Emacs and is always with you;
the second requires that you instrument a function before you can use it.
Both debuggers are described extensively in See section ``Debugging Lisp Programs'' in The GNU Emacs Lisp Reference Manual.
In this chapter, I will walk through a short example of each.
debug




Suppose you have written a function definition that is intended to
return the sum of the numbers 1 through a given number.  (This is the
triangle function discussed earlier.  See Example with Decrementing Counter, for a discussion.)

However, your function definition has a bug.  You have mistyped
‘1=’ for ‘1-’.  Here is the broken definition:


(defun triangle-bugged (number)
  "Return sum of numbers 1 through NUMBER inclusive."
  (let ((total 0))
    (while (> number 0)
      (setq total (+ total number))
      (setq number (1= number)))      ; Error here.
    total))

If you are reading this in Info, you can evaluate this definition in
the normal fashion.  You will see triangle-bugged appear in the
echo area.
Now evaluate the triangle-bugged function with an
argument of 4:

(triangle-bugged 4)

In a recent GNU Emacs, you will create and enter a *Backtrace*
buffer that says:


---------- Buffer: *Backtrace* ----------
Debugger entered--Lisp error: (void-function 1=)
  (1= number)
  (setq number (1= number))
  (while (> number 0) (setq total (+ total number))
        (setq number (1= number)))
  (let ((total 0)) (while (> number 0) (setq total ...)
    (setq number ...)) total)
  triangle-bugged(4)
  eval((triangle-bugged 4))
  eval-last-sexp-1(nil)
  eval-last-sexp(nil)
  call-interactively(eval-last-sexp)
---------- Buffer: *Backtrace* ----------

(I have reformatted this example slightly; the debugger does not fold
long lines.  As usual, you can quit the debugger by typing q in
the *Backtrace* buffer.)
In practice, for a bug as simple as this, the `Lisp error' line will
tell you what you need to know to correct the definition.  The
function 1= is `void'.
However, suppose you are not quite certain what is going on?
You can read the complete backtrace.
In this case, you need to run a recent GNU Emacs, which automatically
starts the debugger that puts you in the *Backtrace* buffer; or
else, you need to start the debugger manually as described below.
Read the *Backtrace* buffer from the bottom up; it tells you
what Emacs did that led to the error.  Emacs made an interactive call
to C-x C-e (eval-last-sexp), which led to the evaluation
of the triangle-bugged expression.  Each line above tells you
what the Lisp interpreter evaluated next.
The third line from the top of the buffer is

(setq number (1= number))

Emacs tried to evaluate this expression; in order to do so, it tried
to evaluate the inner expression shown on the second line from the
top:

(1= number)

This is where the error occurred; as the top line says:

Debugger entered--Lisp error: (void-function 1=)

You can correct the mistake, re-evaluate the function definition, and
then run your test again.


debug-on-entry




A recent GNU Emacs starts the debugger automatically when your
function has an error.
Incidentally, you can start the debugger manually for all versions of
Emacs; the advantage is that the debugger runs even if you do not have
a bug in your code.  Sometimes your code will be free of bugs!
You can enter the debugger when you call the function by calling
debug-on-entry.
Type:

M-x debug-on-entry RET triangle-bugged RET

Now, evaluate the following:

(triangle-bugged 5)

All versions of Emacs will create a *Backtrace* buffer and tell
you that it is beginning to evaluate the triangle-bugged
function:

---------- Buffer: *Backtrace* ----------
Debugger entered--entering a function:
* triangle-bugged(5)
  eval((triangle-bugged 5))
  eval-last-sexp-1(nil)
  eval-last-sexp(nil)
  call-interactively(eval-last-sexp)
---------- Buffer: *Backtrace* ----------

In the *Backtrace* buffer, type d.  Emacs will evaluate
the first expression in triangle-bugged; the buffer will look
like this:

---------- Buffer: *Backtrace* ----------
Debugger entered--beginning evaluation of function call form:
* (let ((total 0)) (while (> number 0) (setq total ...)
        (setq number ...)) total)
* triangle-bugged(5)
  eval((triangle-bugged 5))
  eval-last-sexp-1(nil)
  eval-last-sexp(nil)
  call-interactively(eval-last-sexp)
---------- Buffer: *Backtrace* ----------

Now, type d again, eight times, slowly.  Each time you type
d, Emacs will evaluate another expression in the function
definition.
Eventually, the buffer will look like this:

---------- Buffer: *Backtrace* ----------
Debugger entered--beginning evaluation of function call form:
* (setq number (1= number))
* (while (> number 0) (setq total (+ total number))
        (setq number (1= number)))
* (let ((total 0)) (while (> number 0) (setq total ...)
        (setq number ...)) total)
* triangle-bugged(5)
  eval((triangle-bugged 5))
  eval-last-sexp-1(nil)
  eval-last-sexp(nil)
  call-interactively(eval-last-sexp)
---------- Buffer: *Backtrace* ----------

Finally, after you type d two more times, Emacs will reach the
error, and the top two lines of the *Backtrace* buffer will look
like this:

---------- Buffer: *Backtrace* ----------
Debugger entered--Lisp error: (void-function 1=)
* (1= number)
…
---------- Buffer: *Backtrace* ----------

By typing d, you were able to step through the function.
You can quit a *Backtrace* buffer by typing q in it; this
quits the trace, but does not cancel debug-on-entry.
To cancel the effect of debug-on-entry, call
cancel-debug-on-entry and the name of the function, like this:

M-x cancel-debug-on-entry RET triangle-bugged RET

(If you are reading this in Info, cancel debug-on-entry now.)

debug-on-quit and (debug)



In addition to setting debug-on-error or calling debug-on-entry,
there are two other ways to start debug.
You can start debug whenever you type C-g
(keyboard-quit) by setting the variable debug-on-quit to
t.  This is useful for debugging infinite loops.
Or, you can insert a line that says (debug) into your code
where you want the debugger to start, like this:

(defun triangle-bugged (number)
  "Return sum of numbers 1 through NUMBER inclusive."
  (let ((total 0))
    (while (> number 0)
      (setq total (+ total number))
      (debug)                         ; Start debugger.
      (setq number (1= number)))      ; Error here.
    total))

The debug function is described in detail in See section ``The Lisp Debugger'' in The GNU Emacs Lisp Reference Manual.

The edebug Source Level Debugger




Edebug is a source level debugger.  Edebug normally displays the
source of the code you are debugging, with an arrow at the left that
shows which line you are currently executing.
You can walk through the execution of a function, line by line, or run
quickly until reaching a breakpoint where execution stops.
Edebug is described in See section ``Edebug'' in The GNU Emacs Lisp Reference Manual.
Here is a bugged function definition for triangle-recursively.
See Recursion in place of a counter,
for a review of it.

(defun triangle-recursively-bugged (number)
  "Return sum of numbers 1 through NUMBER inclusive.
Uses recursion."
  (if (= number 1)
      1
    (+ number
       (triangle-recursively-bugged
        (1= number)))))               ; Error here.

Normally, you would install this definition by positioning your cursor
after the function's closing parenthesis and typing C-x C-e
(eval-last-sexp) or else by positioning your cursor within the
definition and typing C-M-x (eval-defun).  (By default,
the eval-defun command works only in Emacs Lisp mode or in Lisp
Interaction mode.)
However, to prepare this function definition for Edebug, you must
first instrument the code using a different command.  You can do
this by positioning your cursor within or just after the definition
and typing

M-x edebug-defun RET

This will cause Emacs to load Edebug automatically if it is not
already loaded, and properly instrument the function.
After instrumenting the function, place your cursor after the
following expression and type C-x C-e (eval-last-sexp):

(triangle-recursively-bugged 3)

You will be jumped back to the source for
triangle-recursively-bugged and the cursor positioned at the
beginning of the if line of the function.  Also, you will see
an arrowhead at the left hand side of that line.  The arrowhead marks
the line where the function is executing.  (In the following examples,
we show the arrowhead with ‘=>’; in a windowing system, you may
see the arrowhead as a solid triangle in the window `fringe'.)

=>-!-(if (= number 1)

In the example, the location of point is displayed as ‘-!-’
(in a printed book, it is displayed with a five pointed star).
If you now press SPC, point will move to the next expression to
be executed; the line will look like this:

=>(if -!-(= number 1)

As you continue to press SPC, point will move from expression to
expression.  At the same time, whenever an expression returns a value,
that value will be displayed in the echo area.  For example, after you
move point past number, you will see the following:

Result: 3 (#o3, #x3, ?\C-c)

This means the value of number is 3, which is octal three,
hexadecimal three, and ascii `control-c' (the third letter of the
alphabet, in case you need to know this information).
You can continue moving through the code until you reach the line with
the error.  Before evaluation, that line looks like this:

=>        -!-(1= number)))))               ; Error here.

When you press SPC once again, you will produce an error message
that says:

Symbol's function definition is void: 1=

This is the bug.
Press q to quit Edebug.
To remove instrumentation from a function definition, simply
re-evaluate it with a command that does not instrument it.
For example, you could place your cursor after the definition's
closing parenthesis and type C-x C-e.
Edebug does a great deal more than walk with you through a function.
You can set it so it races through on its own, stopping only at an
error or at specified stopping points; you can cause it to display the
changing values of various expressions; you can find out how many
times a function is called, and more.
Edebug is described in See section ``Edebug'' in The GNU Emacs Lisp Reference Manual.

Debugging Exercises



	Install the count-words-region function and then cause it to
enter the built-in debugger when you call it.  Run the command on a
region containing two words.  You will need to press d a
remarkable number of times.  On your system, is a `hook' called after
the command finishes?  (For information on hooks, see See section ``Command Loop Overview'' in The GNU Emacs Lisp Reference Manual.)

	Copy count-words-region into the *scratch* buffer,
instrument the function for Edebug, and walk through its execution.
The function does not need to have a bug, although you can introduce
one if you wish.  If the function lacks a bug, the walk-through
completes without problems.

	While running Edebug, type ? to see a list of all the Edebug commands.
(The global-edebug-prefix is usually C-x X, i.e.
CTRL-x followed by an upper case X; use this prefix
for commands made outside of the Edebug debugging buffer.)

	In the Edebug debugging buffer, use the p
(edebug-bounce-point) command to see where in the region the
count-words-region is working.

	Move point to some spot further down the function and then type the
h (edebug-goto-here) command to jump to that location.

	Use the t (edebug-trace-mode) command to cause Edebug to
walk through the function on its own; use an upper case T for
edebug-Trace-fast-mode.

	Set a breakpoint, then run Edebug in Trace mode until it reaches the
stopping point.




Chapter 18. Conclusion



We have now reached the end of this Introduction.  You have now
learned enough about programming in Emacs Lisp to set values, to write
simple .emacs files for yourself and your friends, and write
simple customizations and extensions to Emacs.
This is a place to stop.  Or, if you wish, you can now go onward, and
teach yourself.
You have learned some of the basic nuts and bolts of programming.  But
only some.  There are a great many more brackets and hinges that are
easy to use that we have not touched.
A path you can follow right now lies among the sources to GNU Emacs
and in
The GNU Emacs Lisp Reference Manual.
The Emacs Lisp sources are an adventure.  When you read the sources and
come across a function or expression that is unfamiliar, you need to
figure out or find out what it does.
Go to the Reference Manual.  It is a thorough, complete, and fairly
easy-to-read description of Emacs Lisp.  It is written not only for
experts, but for people who know what you know.  (The Reference
Manual comes with the standard GNU Emacs distribution.  Like this
introduction, it comes as a Texinfo source file, so you can read it
on-line and as a typeset, printed book.)
Go to the other on-line help that is part of GNU Emacs: the on-line
documentation for all functions and variables, and find-tag,
the program that takes you to sources.
Here is an example of how I explore the sources.  Because of its name,
simple.el is the file I looked at first, a long time ago.  As
it happens some of the functions in simple.el are complicated,
or at least look complicated at first sight.  The open-line
function, for example, looks complicated.
You may want to walk through this function slowly, as we did with the
forward-sentence function.  (See The forward-sentence function.)  Or you may want to skip that
function and look at another, such as split-line.  You don't
need to read all the functions.  According to
count-words-in-defun, the split-line function contains
102 words and symbols.
Even though it is short, split-line contains  expressions
we have not studied: skip-chars-forward, indent-to,
current-column and insert-and-inherit.
Consider the skip-chars-forward function.  (It is part of the
function definition for back-to-indentation, which is shown in
Review.)
In GNU Emacs, you can find out more about skip-chars-forward by
typing C-h f (describe-function) and the name of the
function.  This gives you the function documentation.
You may be able to guess what is done by a well named function such as
indent-to; or you can look it up, too.  Incidentally, the
describe-function function itself is in help.el; it is
one of those long, but decipherable functions.  You can look up
describe-function using the C-h f command!
In this instance, since the code is Lisp, the *Help* buffer
contains the name of the library containing the function's source.
You can put point over the name of the library and press the RET key,
which in this situation is bound to help-follow, and be taken
directly to the source, in the same way as M-.
(find-tag).
The definition for describe-function illustrates how to
customize the interactive expression without using the standard
character codes; and it shows how to create a temporary buffer.
(The indent-to function is written in C rather than Emacs Lisp;
it is a `built-in' function.  help-follow takes you to its
source as does find-tag, when properly set up.)
You can look at a function's source using find-tag, which is
bound to M-.  Finally, you can find out what the Reference
Manual has to say by visiting the manual in Info, and typing i
(Info-index) and the name of the function, or by looking up the
function in the index to a printed copy of the manual.
Similarly, you can find out what is meant by
insert-and-inherit.
Other interesting source files include paragraphs.el,
loaddefs.el, and loadup.el.  The paragraphs.el
file includes short, easily understood functions as well as longer
ones.  The loaddefs.el file contains the many standard
autoloads and many keymaps.  I have never looked at it all; only at
parts.  loadup.el is the file that loads the standard parts of
Emacs; it tells you a great deal about how Emacs is built.
(See See section ``Building Emacs'' in The GNU Emacs Lisp Reference Manual, for more about building.)
As I said, you have learned some nuts and bolts; however, and very
importantly, we have hardly touched major aspects of programming; I
have said nothing about how to sort information, except to use the
predefined sort function; I have said nothing about how to store
information, except to use variables and lists; I have said nothing
about how to write programs that write programs.  These are topics for
another, and different kind of book, a different kind of learning.
What you have done is learn enough for much practical work with GNU
Emacs.  What you have done is get started.  This is the end of a
beginning.

Appendix A. The the-the Function




Sometimes when you you write text, you duplicate words—as with “you
you” near the beginning of this sentence.  I find that most
frequently, I duplicate “the”; hence, I call the function for
detecting duplicated words, the-the.
As a first step, you could use the following regular expression to
search for duplicates:

\\(\\w+[ \t\n]+\\)\\1

This regexp matches one or more word-constituent characters followed
by one or more spaces, tabs, or newlines.  However, it does not detect
duplicated words on different lines, since the ending of the first
word, the end of the line, is different from the ending of the second
word, a space.  (For more information about regular expressions, see
Regular Expression Searches, as well as
See section ``Syntax of Regular Expressions'' in The GNU Emacs Manual, and See section ``Regular Expressions'' in The GNU Emacs Lisp Reference Manual.)
You might try searching just for duplicated word-constituent
characters but that does not work since the pattern detects doubles
such as the two occurrences of `th' in `with the'.
Another possible regexp searches for word-constituent characters
followed by non-word-constituent characters, reduplicated.  Here,
‘\\w+’ matches one or more word-constituent characters and
‘\\W*’ matches zero or more non-word-constituent characters.

\\(\\(\\w+\\)\\W*\\)\\1

Again, not useful.
Here is the pattern that I use.  It is not perfect, but good enough.
‘\\b’ matches the empty string, provided it is at the beginning
or end of a word; ‘[^@ \n\t]+’ matches one or more occurrences of
any characters that are not an @-sign, space, newline, or tab.

\\b\\([^@ \n\t]+\\)[ \n\t]+\\1\\b

One can write more complicated expressions, but I found that this
expression is good enough, so I use it.
Here is the the-the function, as I include it in my
.emacs file, along with a handy global key binding:

(defun the-the ()
  "Search forward for for a duplicated word."
  (interactive)
  (message "Searching for for duplicated words ...")
  (push-mark)
  ;; This regexp is not perfect
  ;; but is fairly good over all:
  (if (re-search-forward
       "\\b\\([^@ \n\t]+\\)[ \n\t]+\\1\\b" nil 'move)
      (message "Found duplicated word.")
    (message "End of buffer")))

;; Bind `the-the' to  C-c \
(global-set-key "\C-c\\" 'the-the)

Here is test text:

one two two three four five
five six seven

You can substitute the other regular expressions shown above in the
function definition and try each of them on this list.

Appendix B. Handling the Kill Ring




The kill ring is a list that is transformed into a ring by the
workings of the current-kill function.  The yank and
yank-pop commands use the current-kill function.
This appendix describes the current-kill function as well as
both the yank and the yank-pop commands, but first,
consider the workings of the kill ring.
What the Kill Ring Does



The kill ring has a default maximum length of sixty items; this number
is too large for an explanation.  Instead, set it to four.  Please
evaluate the following:

(setq old-kill-ring-max kill-ring-max)
(setq kill-ring-max 4)

Then, please copy each line of the following indented example into the
kill ring.  You may kill each line with C-k or mark it and copy
it with M-w.
(In a read-only buffer, such as the *info* buffer, the kill
command, C-k (kill-line), will not remove the text,
merely copy it to the kill ring.  However, your machine may beep at
you.  Alternatively, for silence, you may copy the region of each line
with the M-w (kill-ring-save) command.  You must mark
each line for this command to succeed, but it does not matter at which
end you put point or mark.)
Please invoke the calls in order, so that five elements attempt to
fill the kill ring:

first some text
second piece of text
third line
fourth line of text
fifth bit of text

Then find the value of kill-ring by evaluating

kill-ring

It is:

("fifth bit of text" "fourth line of text"
"third line" "second piece of text")

The first element, ‘first some text’, was dropped.
To return to the old value for the length of the kill ring, evaluate:

(setq kill-ring-max old-kill-ring-max)



The current-kill Function




The current-kill function changes the element in the kill ring
to which kill-ring-yank-pointer points.  (Also, the
kill-new function sets kill-ring-yank-pointer to point
to the latest element of the kill ring.  The kill-new
function is used directly or indirectly by kill-append,
copy-region-as-kill, kill-ring-save, kill-line,
and kill-region.)
The code for current-kill



The current-kill function is used by yank and by
yank-pop.  Here is the code for current-kill:

(defun current-kill (n &amp;optional do-not-move)
  "Rotate the yanking point by N places, and then return that kill.
If N is zero, `interprogram-paste-function' is set, and calling it
returns a string, then that string is added to the front of the
kill ring and returned as the latest kill.
If optional arg DO-NOT-MOVE is non-nil, then don't actually move the
yanking point; just return the Nth kill forward."
  (let ((interprogram-paste (and (= n 0)
                                 interprogram-paste-function
                                 (funcall interprogram-paste-function))))
    (if interprogram-paste
        (progn
          ;; Disable the interprogram cut function when we add the new
          ;; text to the kill ring, so Emacs doesn't try to own the
          ;; selection, with identical text.
          (let ((interprogram-cut-function nil))
            (kill-new interprogram-paste))
          interprogram-paste)
      (or kill-ring (error "Kill ring is empty"))
      (let ((ARGth-kill-element
             (nthcdr (mod (- n (length kill-ring-yank-pointer))
                          (length kill-ring))
                     kill-ring)))
        (or do-not-move
            (setq kill-ring-yank-pointer ARGth-kill-element))
        (car ARGth-kill-element)))))

Remember also that the kill-new function sets
kill-ring-yank-pointer to the latest element of the kill
ring, which means that all the functions that call it set the value
indirectly: kill-append, copy-region-as-kill,
kill-ring-save, kill-line, and kill-region.
Here is the line in kill-new, which is explained in
The kill-new function.

(setq kill-ring-yank-pointer kill-ring)


current-kill in Outline



The current-kill function looks complex, but as usual, it can
be understood by taking it apart piece by piece.  First look at it in
skeletal form:

(defun current-kill (n &amp;optional do-not-move)
  "Rotate the yanking point by N places, and then return that kill."
  (let varlist
    body…)

This function takes two arguments, one of which is optional.  It has a
documentation string.  It is not interactive.
The Body of current-kill



The body of the function definition is a let expression, which
itself has a body as well as a varlist.
The let expression declares a variable that will be only usable
within the bounds of this function.  This variable is called
interprogram-paste and is for copying to another program.  It
is not for copying within this instance of GNU Emacs.  Most window
systems provide a facility for interprogram pasting.  Sadly, that
facility usually provides only for the last element.  Most windowing
systems have not adopted a ring of many possibilities, even though
Emacs has provided it for decades.
The if expression has two parts, one if there exists
interprogram-paste and one if not.
Let us consider the `if not' or else-part of the current-kill
function.  (The then-part uses the kill-new function, which
we have already described.  See The kill-new function.)

(or kill-ring (error "Kill ring is empty"))
(let ((ARGth-kill-element
       (nthcdr (mod (- n (length kill-ring-yank-pointer))
                    (length kill-ring))
               kill-ring)))
  (or do-not-move
      (setq kill-ring-yank-pointer ARGth-kill-element))
  (car ARGth-kill-element))

The code first checks whether the kill ring has content; otherwise it
signals an error.
Note that the or expression is very similar to testing length
with an if:


(if (zerop (length kill-ring))          ; if-part
    (error "Kill ring is empty"))       ; then-part
  ;; No else-part

If there is not anything in the kill ring, its length must be zero and
an error message sent to the user: ‘Kill ring is empty’.  The
current-kill function uses an or expression which is
simpler.  But an if expression reminds us what goes on.
This if expression uses the function zerop which returns
true if the value it is testing is zero.  When zerop tests
true, the then-part of the if is evaluated.  The then-part is a
list starting with the function error, which is a function that
is similar to the message function
(see The message Function) in that
it prints a one-line message in the echo area.  However, in addition
to printing a message, error also stops evaluation of the
function within which it is embedded.  This means that the rest of the
function will not be evaluated if the length of the kill ring is zero.
Then the current-kill function selects the element to return.
The selection depends on the number of places that current-kill
rotates and on where kill-ring-yank-pointer points.
Next, either the optional do-not-move argument is true or the
current value of kill-ring-yank-pointer is set to point to the
list.  Finally, another expression returns the first element of the
list even if the do-not-move argument is true.

Digression about the word `error'



In my opinion, it is slightly misleading, at least to humans, to use
the term `error' as the name of the error function.  A better
term would be `cancel'.  Strictly speaking, of course, you cannot
point to, much less rotate a pointer to a list that has no length, so
from the point of view of the computer, the word `error' is correct.
But a human expects to attempt this sort of thing, if only to find out
whether the kill ring is full or empty.  This is an act of
exploration.
From the human point of view, the act of exploration and discovery is
not necessarily an error, and therefore should not be labelled as one,
even in the bowels of a computer.  As it is, the code in Emacs implies
that a human who is acting virtuously, by exploring his or her
environment, is making an error.  This is bad.  Even though the computer
takes the same steps as it does when there is an `error', a term such as
`cancel' would have a clearer connotation.

Determining the Element



Among other actions, the else-part of the if expression sets
the value of kill-ring-yank-pointer to
ARGth-kill-element when the kill ring has something in it and
the value of do-not-move is nil.
The code looks like this:

(nthcdr (mod (- n (length kill-ring-yank-pointer))
             (length kill-ring))
        kill-ring)))

This needs some examination.  Unless it is not supposed to move the
pointer, the current-kill function changes where
kill-ring-yank-pointer points.
That is what the
(setq kill-ring-yank-pointer ARGth-kill-element))
expression does.  Also, clearly, ARGth-kill-element is being
set to be equal to some cdr of the kill ring, using the
nthcdr function that is described in an earlier section.
(See the section called “copy-region-as-kill”.)  How does it do this?
As we have seen before (see the section called “nthcdr”), the nthcdr function
works by repeatedly taking the cdr of a list—it takes the
cdr of the cdr of the cdr …
The two following expressions produce the same result:

(setq kill-ring-yank-pointer (cdr kill-ring))

(setq kill-ring-yank-pointer (nthcdr 1 kill-ring))

However, the nthcdr expression is more complicated.  It uses
the mod function to determine which cdr to select.
(You will remember to look at inner functions first; indeed, we will
have to go inside the mod.)
The mod function returns the value of its first argument modulo
the second; that is to say, it returns the remainder after dividing
the first argument by the second.  The value returned has the same
sign as the second argument.
Thus,

(mod 12 4)
  ⇒ 0  ;; because there is no remainder
(mod 13 4)
  ⇒ 1

In this case, the first argument is often smaller than the second.
That is fine.

(mod 0 4)
  ⇒ 0
(mod 1 4)
  ⇒ 1

We can guess what the - function does.  It is like + but
subtracts instead of adds; the - function subtracts its second
argument from its first.  Also, we already know what the length
function does (see the section called “Find the Length of a List: length”).  It returns the length of a list.
And n is the name of the required argument to the
current-kill function.
So when the first argument to nthcdr is zero, the nthcdr
expression returns the whole list, as you can see by evaluating the
following:

;; kill-ring-yank-pointer and kill-ring have a length of four
;; and (mod (- 0 4) 4) ⇒ 0
(nthcdr (mod (- 0 4) 4)
        '("fourth line of text"
          "third line"
          "second piece of text"
          "first some text"))

When the first argument to the current-kill function is one,
the nthcdr expression returns the list without its first
element.

(nthcdr (mod (- 1 4) 4)
        '("fourth line of text"
          "third line"
          "second piece of text"
          "first some text"))

Incidentally, both kill-ring and kill-ring-yank-pointer
are global variables.  That means that any expression in Emacs
Lisp can access them.  They are not like the local variables set by
let or like the symbols in an argument list.
Local variables can only be accessed
within the let that defines them or the function that specifies
them in an argument list (and within expressions called by them).



yank




After learning about current-kill, the code for the
yank function is almost easy.
The yank function does not use the
kill-ring-yank-pointer variable directly.  It calls
insert-for-yank which calls current-kill which sets the
kill-ring-yank-pointer variable.
The code looks like this:

(defun yank (&amp;optional arg)
  "Reinsert (\"paste\") the last stretch of killed text.
More precisely, reinsert the stretch of killed text most recently
killed OR yanked.  Put point at end, and set mark at beginning.
With just \\[universal-argument] as argument, same but put point at
beginning (and mark at end).  With argument N, reinsert the Nth most
recently killed stretch of killed text.

When this command inserts killed text into the buffer, it honors
`yank-excluded-properties' and `yank-handler' as described in the
doc string for `insert-for-yank-1', which see.

See also the command \\[yank-pop]."
  (interactive "*P")
  (setq yank-window-start (window-start))
  ;; If we don't get all the way thru, make last-command indicate that
  ;; for the following command.
  (setq this-command t)
  (push-mark (point))
  (insert-for-yank (current-kill (cond
                                  ((listp arg) 0)
                                  ((eq arg '-) -2)
                                  (t (1- arg)))))
  (if (consp arg)
      ;; This is like exchange-point-and-mark,
      ;;     but doesn't activate the mark.
      ;; It is cleaner to avoid activation, even though the command
      ;; loop would deactivate the mark because we inserted text.
      (goto-char (prog1 (mark t)
                   (set-marker (mark-marker) (point) (current-buffer)))))
  ;; If we do get all the way thru, make this-command indicate that.
  (if (eq this-command t)
      (setq this-command 'yank))
  nil)

The key expression is insert-for-yank, which inserts the string
returned by current-kill, but removes some text properties from
it.
However, before getting to that expression, the function sets the value
of yank-window-start to the position returned by the
(window-start) expression, the position at which the display
currently starts.  The yank function also sets
this-command and pushes the mark.
After it yanks the appropriate element, if the optional argument is a
cons rather than a number or nothing, it puts point at beginning
of the yanked text and mark at its end.
(The prog1 function is like progn but returns the value
of its first argument rather than the value of its last argument.  Its
first argument is forced to return the buffer's mark as an integer.
You can see the documentation for these functions by placing point
over them in this buffer and then typing C-h f
(describe-function) followed by a RET; the default is the
function.)
The last part of the function tells what to do when it succeeds.

yank-pop




After understanding yank and current-kill, you know how
to approach the yank-pop function.  Leaving out the
documentation to save space, it looks like this:

(defun yank-pop (&amp;optional arg)
  "…"
  (interactive "*p")
  (if (not (eq last-command 'yank))
      (error "Previous command was not a yank"))
  (setq this-command 'yank)
  (unless arg (setq arg 1))
  (let ((inhibit-read-only t)
        (before (< (point) (mark t))))
    (if before
        (funcall (or yank-undo-function 'delete-region) (point) (mark t))
      (funcall (or yank-undo-function 'delete-region) (mark t) (point)))
    (setq yank-undo-function nil)
    (set-marker (mark-marker) (point) (current-buffer))
    (insert-for-yank (current-kill arg))
    ;; Set the window start back where it was in the yank command,
    ;; if possible.
    (set-window-start (selected-window) yank-window-start t)
    (if before
        ;; This is like exchange-point-and-mark,
        ;;     but doesn't activate the mark.
        ;; It is cleaner to avoid activation, even though the command
        ;; loop would deactivate the mark because we inserted text.
        (goto-char (prog1 (mark t)
                     (set-marker (mark-marker)
                                 (point)
                                 (current-buffer))))))
  nil)

The function is interactive with a small ‘p’ so the prefix
argument is processed and passed to the function.  The command can
only be used after a previous yank; otherwise an error message is
sent.  This check uses the variable last-command which is set
by yank and is discussed elsewhere.
(See the section called “copy-region-as-kill”.)
The let clause sets the variable before to true or false
depending whether point is before or after mark and then the region
between point and mark is deleted.  This is the region that was just
inserted by the previous yank and it is this text that will be
replaced.
funcall calls its first argument as a function, passing
remaining arguments to it.  The first argument is whatever the
or expression returns.  The two remaining arguments are the
positions of point and mark set by the preceding yank command.
There is more, but that is the hardest part.

The ring.el File




Interestingly, GNU Emacs posses a file called ring.el that
provides many of the features we just discussed.  But functions such
as kill-ring-yank-pointer do not use this library, possibly
because they were written earlier.

Appendix C. A Graph with Labelled Axes



Printed axes help you understand a graph.  They convey scale.  In an
earlier chapter (see Readying a Graph), we
wrote the code to print the body of a graph.  Here we write the code
for printing and labelling vertical and horizontal axes, along with the
body itself.
Labelled Example Graph



Since insertions fill a buffer to the right and below point, the new
graph printing function should first print the Y or vertical axis,
then the body of the graph, and finally the X or horizontal axis.
This sequence lays out for us the contents of the function:
	Set up code.

	Print Y axis.

	Print body of graph.

	Print X axis.



Here is an example of how a finished graph should look:

    10 -
                  *
                  *  *
                  *  **
                  *  ***
     5 -      *   *******
            * *** *******
            *************
          ***************
     1 - ****************
         |   |    |    |
         1   5   10   15

In this graph, both the vertical and the horizontal axes are labelled
with numbers.  However, in some graphs, the horizontal axis is time
and would be better labelled with months, like this:

     5 -      *
            * ** *
            *******
          ********** **
     1 - **************
         |    ^      |
         Jan  June   Jan

Indeed, with a little thought, we can easily come up with a variety of
vertical and horizontal labelling schemes.  Our task could become
complicated.  But complications breed confusion.  Rather than permit
this, it is better choose a simple labelling scheme for our first
effort, and to modify or replace it later.
These considerations suggest the following outline for the
print-graph function:

(defun print-graph (numbers-list)
  "documentation…"
  (let ((height  …
        …))
    (print-Y-axis height … )
    (graph-body-print numbers-list)
    (print-X-axis … )))

We can work on each part of the print-graph function definition
in turn.


The print-graph Varlist




In writing the print-graph function, the first task is to write
the varlist in the let expression.  (We will leave aside for the
moment any thoughts about making the function interactive or about the
contents of its documentation string.)
The varlist should set several values.  Clearly, the top of the label
for the vertical axis must be at least the height of the graph, which
means that we must obtain this information here.  Note that the
print-graph-body function also requires this information.  There
is no reason to calculate the height of the graph in two different
places, so we should change print-graph-body from the way we
defined it earlier to take advantage of the calculation.
Similarly, both the function for printing the X axis labels and the
print-graph-body function need to learn the value of the width of
each symbol.  We can perform the calculation here and change the
definition for print-graph-body from the way we defined it in the
previous chapter.
The length of the label for the horizontal axis must be at least as long
as the graph.  However, this information is used only in the function
that prints the horizontal axis, so it does not need to be calculated here.
These thoughts lead us directly to the following form for the varlist
in the let for print-graph:

(let ((height (apply 'max numbers-list)) ; First version.
      (symbol-width (length graph-blank)))

As we shall see, this expression is not quite right.

The print-Y-axis Function




The job of the print-Y-axis function is to print a label for
the vertical axis that looks like this:

    10 -




     5 -



     1 -

The function should be passed the height of the graph, and then should
construct and insert the appropriate numbers and marks.
The print-Y-axis Function in Detail



It is easy enough to see in the figure what the Y axis label should
look like; but to say in words, and then to write a function
definition to do the job is another matter.  It is not quite true to
say that we want a number and a tic every five lines: there are only
three lines between the ‘1’ and the ‘5’ (lines 2, 3, and 4),
but four lines between the ‘5’ and the ‘10’ (lines 6, 7, 8,
and 9).  It is better to say that we want a number and a tic mark on
the base line (number 1) and then that we want a number and a tic on
the fifth line from the bottom and on every line that is a multiple of
five.

What height should the label be?



The next issue is what height the label should be?  Suppose the maximum
height of tallest column of the graph is seven.  Should the highest
label on the Y axis be ‘5 -’, and should the graph stick up above
the label?  Or should the highest label be ‘7 -’, and mark the peak
of the graph?  Or should the highest label be 10 -, which is a
multiple of five, and be higher than the topmost value of the graph?
The latter form is preferred.  Most graphs are drawn within rectangles
whose sides are an integral number of steps long—5, 10, 15, and so
on for a step distance of five.  But as soon as we decide to use a
step height for the vertical axis, we discover that the simple
expression in the varlist for computing the height is wrong.  The
expression is (apply 'max numbers-list).  This returns the
precise height, not the maximum height plus whatever is necessary to
round up to the nearest multiple of five.  A more complex expression
is required.
As usual in cases like this, a complex problem becomes simpler if it is
divided into several smaller problems.
First, consider the case when the highest value of the graph is an
integral multiple of five—when it is 5, 10, 15, or some higher
multiple of five.  We can use this value as the Y axis height.
A fairly simply way to determine whether a number is a multiple of
five is to divide it by five and see if the division results in a
remainder.  If there is no remainder, the number is a multiple of
five.  Thus, seven divided by five has a remainder of two, and seven
is not an integral multiple of five.  Put in slightly different
language, more reminiscent of the classroom, five goes into seven
once, with a remainder of two.  However, five goes into ten twice,
with no remainder: ten is an integral multiple of five.

Side Trip: Compute a Remainder



In Lisp, the function for computing a remainder is %.  The
function returns the remainder of its first argument divided by its
second argument.  As it happens, % is a function in Emacs Lisp
that you cannot discover using apropos: you find nothing if you
type M-x apropos RET remainder RET.  The only way to
learn of the existence of % is to read about it in a book such
as this or in the Emacs Lisp sources.
You can try the % function by evaluating the following two
expressions:

(% 7 5)

(% 10 5)

The first expression returns 2 and the second expression returns 0.
To test whether the returned value is zero or some other number, we
can use the zerop function.  This function returns t if
its argument, which must be a number, is zero.

(zerop (% 7 5))
     ⇒ nil

(zerop (% 10 5))
     ⇒ t

Thus, the following expression will return t if the height
of the graph is evenly divisible by five:

(zerop (% height 5))

(The value of height, of course, can be found from (apply
'max numbers-list).)
On the other hand, if the value of height is not a multiple of
five, we want to reset the value to the next higher multiple of five.
This is straightforward arithmetic using functions with which we are
already familiar.  First, we divide the value of height by five
to determine how many times five goes into the number.  Thus, five
goes into twelve twice.  If we add one to this quotient and multiply by
five, we will obtain the value of the next multiple of five that is
larger than the height.  Five goes into twelve twice.  Add one to two,
and multiply by five; the result is fifteen, which is the next multiple
of five that is higher than twelve.  The Lisp expression for this is:

(* (1+ (/ height 5)) 5)

For example, if you evaluate the following, the result is 15:

(* (1+ (/ 12 5)) 5)

All through this discussion, we have been using `five' as the value
for spacing labels on the Y axis; but we may want to use some other
value.  For generality, we should replace `five' with a variable to
which we can assign a value.  The best name I can think of for this
variable is Y-axis-label-spacing.
Using this term, and an if expression, we produce the
following:

(if (zerop (% height Y-axis-label-spacing))
    height
  ;; else
  (* (1+ (/ height Y-axis-label-spacing))
     Y-axis-label-spacing))

This expression returns the value of height itself if the height
is an even multiple of the value of the Y-axis-label-spacing or
else it computes and returns a value of height that is equal to
the next higher multiple of the value of the Y-axis-label-spacing.
We can now include this expression in the let expression of the
print-graph function (after first setting the value of
Y-axis-label-spacing):


(defvar Y-axis-label-spacing 5
  "Number of lines from one Y axis label to next.")

…
(let* ((height (apply 'max numbers-list))
       (height-of-top-line
        (if (zerop (% height Y-axis-label-spacing))
            height
          ;; else
          (* (1+ (/ height Y-axis-label-spacing))
             Y-axis-label-spacing)))
       (symbol-width (length graph-blank))))
…

(Note use of the  let* function: the initial value of height is
computed once by the (apply 'max numbers-list) expression and
then the resulting value of  height is used to compute its
final value.  See The let* expression, for
more about let*.)

Construct a Y Axis Element



When we print the vertical axis, we want to insert strings such as
‘5 -’ and ‘10 - ’ every five lines.
Moreover, we want the numbers and dashes to line up, so shorter
numbers must be padded with leading spaces.  If some of the strings
use two digit numbers, the strings with single digit numbers must
include a leading blank space before the number.
To figure out the length of the number, the length function is
used.  But the length function works only with a string, not with
a number.  So the number has to be converted from being a number to
being a string.  This is done with the number-to-string function.
For example,

(length (number-to-string 35))
     ⇒ 2

(length (number-to-string 100))
     ⇒ 3

(number-to-string is also called int-to-string; you will
see this alternative name in various sources.)
In addition, in each label, each number is followed by a string such
as ‘ - ’, which we will call the Y-axis-tic marker.
This variable is defined with defvar:


(defvar Y-axis-tic " - "
   "String that follows number in a Y axis label.")

The length of the Y label is the sum of the length of the Y axis tic
mark and the length of the number of the top of the graph.

(length (concat (number-to-string height) Y-axis-tic)))

This value will be calculated by the print-graph function in
its varlist as full-Y-label-width and passed on.  (Note that we
did not think to include this in the varlist when we first proposed it.)
To make a complete vertical axis label, a tic mark is concatenated
with a number; and the two together may be preceded by one or more
spaces depending on how long the number is.  The label consists of
three parts: the (optional) leading spaces, the number, and the tic
mark.  The function is passed the value of the number for the specific
row, and the value of the width of the top line, which is calculated
(just once) by print-graph.

(defun Y-axis-element (number full-Y-label-width)
  "Construct a NUMBERed label element.
A numbered element looks like this `  5 - ',
and is padded as needed so all line up with
the element for the largest number."
  (let* ((leading-spaces
         (- full-Y-label-width
            (length
             (concat (number-to-string number)
                     Y-axis-tic)))))
    (concat
     (make-string leading-spaces ? )
     (number-to-string number)
     Y-axis-tic)))

The Y-axis-element function concatenates together the leading
spaces, if any; the number, as a string; and the tic mark.
To figure out how many leading spaces the label will need, the
function subtracts the actual length of the label—the length of the
number plus the length of the tic mark—from the desired label width.
Blank spaces are inserted using the make-string function.  This
function takes two arguments: the first tells it how long the string
will be and the second is a symbol for the character to insert, in a
special format.  The format is a question mark followed by a blank
space, like this, ‘? ’.  See See section ``Character Type'' in The GNU Emacs Lisp Reference Manual, for a description of the
syntax for characters.  (Of course, you might want to replace the
blank space by some other character …  You know what to do.)
The number-to-string function is used in the concatenation
expression, to convert the number to a string that is concatenated
with the leading spaces and the tic mark.

Create a Y Axis Column



The preceding functions provide all the tools needed to construct a
function that generates a list of numbered and blank strings to insert
as the label for the vertical axis:


(defun Y-axis-column (height width-of-label)
  "Construct list of Y axis labels and blank strings.
For HEIGHT of line above base and WIDTH-OF-LABEL."
  (let (Y-axis)
    (while (> height 1)
      (if (zerop (% height Y-axis-label-spacing))
          ;; Insert label.
          (setq Y-axis
                (cons
                 (Y-axis-element height width-of-label)
                 Y-axis))
        ;; Else, insert blanks.
        (setq Y-axis
              (cons
               (make-string width-of-label ? )
               Y-axis)))
      (setq height (1- height)))
    ;; Insert base line.
    (setq Y-axis
          (cons (Y-axis-element 1 width-of-label) Y-axis))
    (nreverse Y-axis)))

In this function, we start with the value of height and
repetitively subtract one from its value.  After each subtraction, we
test to see whether the value is an integral multiple of the
Y-axis-label-spacing.  If it is, we construct a numbered label
using the Y-axis-element function; if not, we construct a
blank label using the make-string function.  The base line
consists of the number one followed by a tic mark.

The Not Quite Final Version of print-Y-axis



The list constructed by the Y-axis-column function is passed to
the print-Y-axis function, which inserts the list as a column.


(defun print-Y-axis (height full-Y-label-width)
  "Insert Y axis using HEIGHT and FULL-Y-LABEL-WIDTH.
Height must be the maximum height of the graph.
Full width is the width of the highest label element."
;; Value of height and full-Y-label-width
;; are passed by `print-graph'.
  (let ((start (point)))
    (insert-rectangle
     (Y-axis-column height full-Y-label-width))
    ;; Place point ready for inserting graph.
    (goto-char start)
    ;; Move point forward by value of full-Y-label-width
    (forward-char full-Y-label-width)))

The print-Y-axis uses the insert-rectangle function to
insert the Y axis labels created by the Y-axis-column function.
In addition, it places point at the correct position for printing the body of
the graph.
You can test print-Y-axis:
	Install

Y-axis-label-spacing
Y-axis-tic
Y-axis-element
Y-axis-column
print-Y-axis


	Copy the following expression:

(print-Y-axis 12 5)


	Switch to the *scratch* buffer and place the cursor where you
want the axis labels to start.

	Type M-: (eval-expression).

	Yank the graph-body-print expression into the minibuffer
with C-y (yank).

	Press RET to evaluate the expression.



Emacs will print labels vertically, the top one being ‘10 -
’.  (The print-graph function will pass the value of
height-of-top-line, which in this case will end up as 15,
thereby getting rid of what might appear as a bug.)


The print-X-axis Function




X axis labels are much like Y axis labels, except that the ticks are on a
line above the numbers.  Labels should look like this:

    |   |    |    |
    1   5   10   15

The first tic is under the first column of the graph and is preceded by
several blank spaces.  These spaces provide room in rows above for the Y
axis labels.  The second, third, fourth, and subsequent ticks are all
spaced equally, according to the value of X-axis-label-spacing.
The second row of the X axis consists of numbers, preceded by several
blank spaces and also separated according to the value of the variable
X-axis-label-spacing.
The value of the variable X-axis-label-spacing should itself be
measured in units of symbol-width, since you may want to change
the width of the symbols that you are using to print the body of the
graph without changing the ways the graph is labelled.
Similarities and differences



The print-X-axis function is constructed in more or less the
same fashion as the print-Y-axis function except that it has
two lines: the line of tic marks and the numbers.  We will write a
separate function to print each line and then combine them within the
print-X-axis function.
This is a three step process:
	Write a function to print the X axis tic marks, print-X-axis-tic-line.

	Write a function to print the X numbers, print-X-axis-numbered-line.

	Write a function to print both lines, the print-X-axis function,
using print-X-axis-tic-line and
print-X-axis-numbered-line.




X Axis Tic Marks



The first function should print the X axis tic marks.  We must specify
the tic marks themselves and their spacing:

(defvar X-axis-label-spacing
  (if (boundp 'graph-blank)
      (* 5 (length graph-blank)) 5)
  "Number of units from one X axis label to next.")

(Note that the value of graph-blank is set by another
defvar.  The boundp predicate checks whether it has
already been set; boundp returns nil if it has not.  If
graph-blank were unbound and we did not use this conditional
construction, in a recent GNU Emacs, we would enter the debugger and
see an error message saying ‘Debugger entered--Lisp error:
(void-variable graph-blank)’.)
Here is the defvar for X-axis-tic-symbol:

(defvar X-axis-tic-symbol "|"
  "String to insert to point to a column in X axis.")

The goal is to make a line that looks like this:

       |   |    |    |

The first tic is indented so that it is under the first column, which is
indented to provide space for the Y axis labels.
A tic element consists of the blank spaces that stretch from one tic to
the next plus a tic symbol.  The number of blanks is determined by the
width of the tic symbol and the X-axis-label-spacing.
The code looks like this:

;;; X-axis-tic-element
…
(concat
 (make-string
  ;; Make a string of blanks.
  (-  (* symbol-width X-axis-label-spacing)
      (length X-axis-tic-symbol))
  ? )
 ;; Concatenate blanks with tic symbol.
 X-axis-tic-symbol)
…

Next, we determine how many blanks are needed to indent the first tic
mark to the first column of the graph.  This uses the value of
full-Y-label-width passed it by the print-graph function.
The code to make X-axis-leading-spaces
looks like this:

;; X-axis-leading-spaces
…
(make-string full-Y-label-width ? )
…

We also need to determine the length of the horizontal axis, which is
the length of the numbers list, and the number of ticks in the horizontal
axis:

;; X-length
…
(length numbers-list)

;; tic-width
…
(* symbol-width X-axis-label-spacing)

;; number-of-X-ticks
(if (zerop (% (X-length tic-width)))
    (/ (X-length tic-width))
  (1+ (/ (X-length tic-width))))

All this leads us directly to the function for printing the X axis tic line:


(defun print-X-axis-tic-line
  (number-of-X-tics X-axis-leading-spaces X-axis-tic-element)
  "Print ticks for X axis."
    (insert X-axis-leading-spaces)
    (insert X-axis-tic-symbol)  ; Under first column.
    ;; Insert second tic in the right spot.
    (insert (concat
             (make-string
              (-  (* symbol-width X-axis-label-spacing)
                  ;; Insert white space up to second tic symbol.
                  (* 2 (length X-axis-tic-symbol)))
              ? )
             X-axis-tic-symbol))
    ;; Insert remaining ticks.
    (while (> number-of-X-tics 1)
      (insert X-axis-tic-element)
      (setq number-of-X-tics (1- number-of-X-tics))))

The line of numbers is equally straightforward:
First, we create a numbered element with blank spaces before each number:


(defun X-axis-element (number)
  "Construct a numbered X axis element."
  (let ((leading-spaces
         (-  (* symbol-width X-axis-label-spacing)
             (length (number-to-string number)))))
    (concat (make-string leading-spaces ? )
            (number-to-string number))))

Next, we create the function to print the numbered line, starting with
the number “1” under the first column:


(defun print-X-axis-numbered-line
  (number-of-X-tics X-axis-leading-spaces)
  "Print line of X-axis numbers"
  (let ((number X-axis-label-spacing))
    (insert X-axis-leading-spaces)
    (insert "1")
    (insert (concat
             (make-string
              ;; Insert white space up to next number.
              (-  (* symbol-width X-axis-label-spacing) 2)
              ? )
             (number-to-string number)))
    ;; Insert remaining numbers.
    (setq number (+ number X-axis-label-spacing))
    (while (> number-of-X-tics 1)
      (insert (X-axis-element number))
      (setq number (+ number X-axis-label-spacing))
      (setq number-of-X-tics (1- number-of-X-tics)))))

Finally, we need to write the print-X-axis that uses
print-X-axis-tic-line and
print-X-axis-numbered-line.
The function must determine the local values of the variables used by both
print-X-axis-tic-line and print-X-axis-numbered-line, and
then it must call them.  Also, it must print the carriage return that
separates the two lines.
The function consists of a varlist that specifies five local variables,
and calls to each of the two line printing functions:


(defun print-X-axis (numbers-list)
  "Print X axis labels to length of NUMBERS-LIST."
  (let* ((leading-spaces
          (make-string full-Y-label-width ? ))
       ;; symbol-width is provided by graph-body-print
       (tic-width (* symbol-width X-axis-label-spacing))
       (X-length (length numbers-list))
       (X-tic
        (concat
         (make-string
          ;; Make a string of blanks.
          (-  (* symbol-width X-axis-label-spacing)
              (length X-axis-tic-symbol))
          ? )
         ;; Concatenate blanks with tic symbol.
         X-axis-tic-symbol))
       (tic-number
        (if (zerop (% X-length tic-width))
            (/ X-length tic-width)
          (1+ (/ X-length tic-width)))))
    (print-X-axis-tic-line tic-number leading-spaces X-tic)
    (insert "\n")
    (print-X-axis-numbered-line tic-number leading-spaces)))

You can test print-X-axis:
	Install X-axis-tic-symbol, X-axis-label-spacing,
print-X-axis-tic-line, as well as X-axis-element,
print-X-axis-numbered-line, and print-X-axis.

	Copy the following expression:

(progn
 (let ((full-Y-label-width 5)
       (symbol-width 1))
   (print-X-axis
    '(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16))))


	Switch to the *scratch* buffer and place the cursor where you
want the axis labels to start.

	Type M-: (eval-expression).

	Yank the test expression into the minibuffer
with C-y (yank).

	Press RET to evaluate the expression.



Emacs will print the horizontal axis like this:

     |   |    |    |    |
     1   5   10   15   20



Printing the Whole Graph




Now we are nearly ready to print the whole graph.
The function to print the graph with the proper labels follows the
outline we created earlier (see A Graph with Labelled Axes), but with additions.
Here is the outline:

(defun print-graph (numbers-list)
  "documentation…"
  (let ((height  …
        …))
    (print-Y-axis height … )
    (graph-body-print numbers-list)
    (print-X-axis … )))

Changes for the Final Version



The final version is different from what we planned in two ways:
first, it contains additional values calculated once in the varlist;
second, it carries an option to specify the labels' increment per row.
This latter feature turns out to be essential; otherwise, a graph may
have more rows than fit on a display or on a sheet of paper.
This new feature requires a change to the Y-axis-column
function, to add vertical-step to it.  The function looks like
this:


;;; Final version.
(defun Y-axis-column
  (height width-of-label &amp;optional vertical-step)
  "Construct list of labels for Y axis.
HEIGHT is maximum height of graph.
WIDTH-OF-LABEL is maximum width of label.
VERTICAL-STEP, an option, is a positive integer
that specifies how much a Y axis label increments
for each line.  For example, a step of 5 means
that each line is five units of the graph."
  (let (Y-axis
        (number-per-line (or vertical-step 1)))
    (while (> height 1)
      (if (zerop (% height Y-axis-label-spacing))
          ;; Insert label.
          (setq Y-axis
                (cons
                 (Y-axis-element
                  (* height number-per-line)
                  width-of-label)
                 Y-axis))
        ;; Else, insert blanks.
        (setq Y-axis
              (cons
               (make-string width-of-label ? )
               Y-axis)))
      (setq height (1- height)))
    ;; Insert base line.
    (setq Y-axis (cons (Y-axis-element
                        (or vertical-step 1)
                        width-of-label)
                       Y-axis))
    (nreverse Y-axis)))

The values for the maximum height of graph and the width of a symbol
are computed by print-graph in its let expression; so
graph-body-print must be changed to accept them.


;;; Final version.
(defun graph-body-print (numbers-list height symbol-width)
  "Print a bar graph of the NUMBERS-LIST.
The numbers-list consists of the Y-axis values.
HEIGHT is maximum height of graph.
SYMBOL-WIDTH is number of each column."
  (let (from-position)
    (while numbers-list
      (setq from-position (point))
      (insert-rectangle
       (column-of-graph height (car numbers-list)))
      (goto-char from-position)
      (forward-char symbol-width)
      ;; Draw graph column by column.
      (sit-for 0)
      (setq numbers-list (cdr numbers-list)))
    ;; Place point for X axis labels.
    (forward-line height)
    (insert "\n")))

Finally, the code for the print-graph function:


;;; Final version.
(defun print-graph
  (numbers-list &amp;optional vertical-step)
  "Print labelled bar graph of the NUMBERS-LIST.
The numbers-list consists of the Y-axis values.

Optionally, VERTICAL-STEP, a positive integer,
specifies how much a Y axis label increments for
each line.  For example, a step of 5 means that
each row is five units."
  (let* ((symbol-width (length graph-blank))
         ;; height is both the largest number
         ;; and the number with the most digits.
         (height (apply 'max numbers-list))
         (height-of-top-line
          (if (zerop (% height Y-axis-label-spacing))
              height
            ;; else
            (* (1+ (/ height Y-axis-label-spacing))
               Y-axis-label-spacing)))
         (vertical-step (or vertical-step 1))
         (full-Y-label-width
          (length
           (concat
            (number-to-string
             (* height-of-top-line vertical-step))
            Y-axis-tic))))

    (print-Y-axis
     height-of-top-line full-Y-label-width vertical-step)
    (graph-body-print
     numbers-list height-of-top-line symbol-width)
    (print-X-axis numbers-list)))


Testing print-graph



We can test the print-graph function with a short list of numbers:
	Install the final versions of Y-axis-column,
graph-body-print, and print-graph (in addition to the
rest of the code.)

	Copy the following expression:

(print-graph '(3 2 5 6 7 5 3 4 6 4 3 2 1))


	Switch to the *scratch* buffer and place the cursor where you
want the axis labels to start.

	Type M-: (eval-expression).

	Yank the test expression into the minibuffer
with C-y (yank).

	Press RET to evaluate the expression.



Emacs will print a graph that looks like this:

10 -


         *
        **   *
 5 -   ****  *
       **** ***
     * *********
     ************
 1 - *************

     |   |    |    |
     1   5   10   15

On the other hand, if you pass print-graph a
vertical-step value of 2, by evaluating this expression:

(print-graph '(3 2 5 6 7 5 3 4 6 4 3 2 1) 2)

The graph looks like this:

20 -


         *
        **   *
10 -   ****  *
       **** ***
     * *********
     ************
 2 - *************

     |   |    |    |
     1   5   10   15

(A question: is the `2' on the bottom of the vertical axis a bug or a
feature?  If you think it is a bug, and should be a `1' instead, (or
even a `0'), you can modify the sources.)

Graphing Numbers of Words and Symbols



Now for the graph for which all this code was written: a graph that
shows how many function definitions contain fewer than 10 words and
symbols, how many contain between 10 and 19 words and symbols, how
many contain between 20 and 29 words and symbols, and so on.
This is a multi-step process.  First make sure you have loaded all the
requisite code.
It is a good idea to reset the value of top-of-ranges in case
you have set it to some different value.  You can evaluate the
following:

(setq top-of-ranges
 '(10  20  30  40  50
   60  70  80  90 100
  110 120 130 140 150
  160 170 180 190 200
  210 220 230 240 250
  260 270 280 290 300)

Next create a list of the number of words and symbols in each range.
Evaluate the following:

(setq list-for-graph
       (defuns-per-range
         (sort
          (recursive-lengths-list-many-files
           (directory-files "/usr/local/emacs/lisp"
                            t ".+el$"))
          '<)
         top-of-ranges))

On my old machine, this took about an hour.  It looked though 303 Lisp
files in my copy of Emacs version 19.23.  After all that computing,
the list-for-graph had this value:

(537 1027 955 785 594 483 349 292 224 199 166 120 116 99
90 80 67 48 52 45 41 33 28 26 25 20 12 28 11 13 220)

This means that my copy of Emacs had 537 function definitions with
fewer than 10 words or symbols in them, 1,027 function definitions
with 10 to 19 words or symbols in them, 955 function definitions with
20 to 29 words or symbols in them, and so on.
Clearly, just by looking at this list we can see that most function
definitions contain ten to thirty words and symbols.
Now for printing.  We do not want to print a graph that is
1,030 lines high …  Instead, we should print a graph that is
fewer than twenty-five lines high.  A graph that height can be
displayed on almost any monitor, and easily printed on a sheet of paper.
This means that each value in list-for-graph must be reduced to
one-fiftieth its present value.
Here is a short function to do just that, using two functions we have
not yet seen, mapcar and lambda.

(defun one-fiftieth (full-range)
  "Return list, each number one-fiftieth of previous."
 (mapcar '(lambda (arg) (/ arg 50)) full-range))


A lambda Expression: Useful Anonymity




lambda is the symbol for an anonymous function, a function
without a name.  Every time you use an anonymous function, you need to
include its whole body.
Thus,

(lambda (arg) (/ arg 50))

is a function definition that says `return the value resulting from
dividing whatever is passed to me as arg by 50'.
Earlier, for example, we had a function multiply-by-seven; it
multiplied its argument by 7.  This function is similar, except it
divides its argument by 50; and, it has no name.  The anonymous
equivalent of multiply-by-seven is:

(lambda (number) (* 7 number))

(See The defun Special Form.)
If we want to multiply 3 by 7, we can write:

(multiply-by-seven 3)
 \_______________/ ^
         |         |
      function  argument

This expression returns 21.
Similarly, we can write:

((lambda (number) (* 7 number)) 3)
 \____________________________/ ^
               |                |
      anonymous function     argument

If we want to divide 100 by 50, we can write:

((lambda (arg) (/ arg 50)) 100)
 \______________________/  \_/
             |              |
    anonymous function   argument

This expression returns 2.  The 100 is passed to the function, which
divides that number by 50.
See See section ``Lambda Expressions'' in The GNU Emacs Lisp Reference Manual, for more about lambda.  Lisp and lambda
expressions derive from the Lambda Calculus.

The mapcar Function




mapcar is a function that calls its first argument with each
element of its second argument, in turn.  The second argument must be
a sequence.
The ‘map’ part of the name comes from the mathematical phrase,
`mapping over a domain', meaning to apply a function to each of the
elements in a domain.  The mathematical phrase is based on the
metaphor of a surveyor walking, one step at a time, over an area he is
mapping.  And ‘car’, of course, comes from the Lisp notion of the
first of a list.
For example,

(mapcar '1+ '(2 4 6))
     ⇒ (3 5 7)

The function 1+ which adds one to its argument, is executed on
each element of the list, and a new list is returned.
Contrast this with apply, which applies its first argument to
all the remaining.
(See Readying a Graph, for a explanation of
apply.)
In the definition of one-fiftieth, the first argument is the
anonymous function:

(lambda (arg) (/ arg 50))

and the second argument is full-range, which will be bound to
list-for-graph.
The whole expression looks like this:

(mapcar '(lambda (arg) (/ arg 50)) full-range))

See See section ``Mapping Functions'' in The GNU Emacs Lisp Reference Manual, for more about mapcar.
Using the one-fiftieth function, we can generate a list in
which each element is one-fiftieth the size of the corresponding
element in list-for-graph.

(setq fiftieth-list-for-graph
      (one-fiftieth list-for-graph))

The resulting list looks like this:

(10 20 19 15 11 9 6 5 4 3 3 2 2
1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 4)

This, we are almost ready to print!  (We also notice the loss of
information: many of the higher ranges are 0, meaning that fewer than
50 defuns had that many words or symbols—but not necessarily meaning
that none had that many words or symbols.)

Another Bug … Most Insidious




I said `almost ready to print'!  Of course, there is a bug in the
print-graph function …  It has a vertical-step
option, but not a horizontal-step option.  The
top-of-range scale goes from 10 to 300 by tens.  But the
print-graph function will print only by ones.
This is a classic example of what some consider the most insidious
type of bug, the bug of omission.  This is not the kind of bug you can
find by studying the code, for it is not in the code; it is an omitted
feature.  Your best actions are to try your program early and often;
and try to arrange, as much as you can, to write code that is easy to
understand and easy to change.  Try to be aware, whenever you can,
that whatever you have written, will be rewritten, if not soon,
eventually.  A hard maxim to follow.
It is the print-X-axis-numbered-line function that needs the
work; and then the print-X-axis and the print-graph
functions need to be adapted.  Not much needs to be done; there is one
nicety: the numbers ought to line up under the tic marks.  This takes
a little thought.
Here is the corrected print-X-axis-numbered-line:

(defun print-X-axis-numbered-line
  (number-of-X-tics X-axis-leading-spaces
   &amp;optional horizontal-step)
  "Print line of X-axis numbers"
  (let ((number X-axis-label-spacing)
        (horizontal-step (or horizontal-step 1)))
    (insert X-axis-leading-spaces)
    ;; Delete extra leading spaces.
    (delete-char
     (- (1-
         (length (number-to-string horizontal-step)))))
    (insert (concat
             (make-string
              ;; Insert white space.
              (-  (* symbol-width
                     X-axis-label-spacing)
                  (1-
                   (length
                    (number-to-string horizontal-step)))
                  2)
              ? )
             (number-to-string
              (* number horizontal-step))))
    ;; Insert remaining numbers.
    (setq number (+ number X-axis-label-spacing))
    (while (> number-of-X-tics 1)
      (insert (X-axis-element
               (* number horizontal-step)))
      (setq number (+ number X-axis-label-spacing))
      (setq number-of-X-tics (1- number-of-X-tics)))))

If you are reading this in Info, you can see the new versions of
print-X-axis print-graph and evaluate them.  If you are
reading this in a printed book, you can see the changed lines here
(the full text is too much to print).

(defun print-X-axis (numbers-list horizontal-step)
  "Print X axis labels to length of NUMBERS-LIST.
Optionally, HORIZONTAL-STEP, a positive integer,
specifies how much an X  axis label increments for
each column."
;; Value of symbol-width and full-Y-label-width
;; are passed by `print-graph'.
  (let* ((leading-spaces
          (make-string full-Y-label-width ? ))
       ;; symbol-width is provided by graph-body-print
       (tic-width (* symbol-width X-axis-label-spacing))
       (X-length (length numbers-list))
       (X-tic
        (concat
         (make-string
          ;; Make a string of blanks.
          (-  (* symbol-width X-axis-label-spacing)
              (length X-axis-tic-symbol))
          ? )
         ;; Concatenate blanks with tic symbol.
         X-axis-tic-symbol))
       (tic-number
        (if (zerop (% X-length tic-width))
            (/ X-length tic-width)
          (1+ (/ X-length tic-width)))))

    (print-X-axis-tic-line
     tic-number leading-spaces X-tic)
    (insert "\n")
    (print-X-axis-numbered-line
     tic-number leading-spaces horizontal-step)))


(defun print-graph
  (numbers-list &amp;optional vertical-step horizontal-step)
  "Print labelled bar graph of the NUMBERS-LIST.
The numbers-list consists of the Y-axis values.

Optionally, VERTICAL-STEP, a positive integer,
specifies how much a Y axis label increments for
each line.  For example, a step of 5 means that
each row is five units.

Optionally, HORIZONTAL-STEP, a positive integer,
specifies how much an X  axis label increments for
each column."
  (let* ((symbol-width (length graph-blank))
         ;; height is both the largest number
         ;; and the number with the most digits.
         (height (apply 'max numbers-list))
         (height-of-top-line
          (if (zerop (% height Y-axis-label-spacing))
              height
            ;; else
            (* (1+ (/ height Y-axis-label-spacing))
               Y-axis-label-spacing)))
         (vertical-step (or vertical-step 1))
         (full-Y-label-width
          (length
           (concat
            (number-to-string
             (* height-of-top-line vertical-step))
            Y-axis-tic))))
    (print-Y-axis
     height-of-top-line full-Y-label-width vertical-step)
    (graph-body-print
        numbers-list height-of-top-line symbol-width)
    (print-X-axis numbers-list horizontal-step)))


The Printed Graph



When made and installed, you can call the print-graph command
like this:

(print-graph fiftieth-list-for-graph 50 10)

Here is the graph:

1000 -  *
        **
        **
        **
        **
 750 -  ***
        ***
        ***
        ***
        ****
 500 - *****
       ******
       ******
       ******
       *******
 250 - ********
       *********                     *
       ***********                   *
       *************                 *
  50 - ***************** *           *
       |   |    |    |    |    |    |    |
      10  50  100  150  200  250  300  350

The largest group of functions contain 10 – 19 words and symbols each.


Appendix D. Free Software and Free Manuals



by Richard M. Stallman
The biggest deficiency in free operating systems is not in the
software—it is the lack of good free manuals that we can include in
these systems.  Many of our most important programs do not come with
full manuals.  Documentation is an essential part of any software
package; when an important free software package does not come with a
free manual, that is a major gap.  We have many such gaps today.
Once upon a time, many years ago, I thought I would learn Perl.  I got
a copy of a free manual, but I found it hard to read.  When I asked
Perl users about alternatives, they told me that there were better
introductory manuals—but those were not free.
Why was this?  The authors of the good manuals had written them for
O'Reilly Associates, which published them with restrictive terms—no
copying, no modification, source files not available—which exclude
them from the free software community.
That wasn't the first time this sort of thing has happened, and (to
our community's great loss) it was far from the last.  Proprietary
manual publishers have enticed a great many authors to restrict their
manuals since then.  Many times I have heard a GNU user eagerly tell me
about a manual that he is writing, with which he expects to help the
GNU project—and then had my hopes dashed, as he proceeded to explain
that he had signed a contract with a publisher that would restrict it
so that we cannot use it.
Given that writing good English is a rare skill among programmers, we
can ill afford to lose manuals this way.
Free documentation, like free software, is a matter of freedom, not
price.  The problem with these manuals was not that O'Reilly Associates
charged a price for printed copies—that in itself is fine.  The Free
Software Foundation sells printed copies of
free GNU manuals, too.
But GNU manuals are available in source code form, while these manuals
are available only on paper.  GNU manuals come with permission to copy
and modify; the Perl manuals do not.  These restrictions are the
problems.
The criterion for a free manual is pretty much the same as for free
software: it is a matter of giving all users certain
freedoms.  Redistribution (including commercial redistribution) must be
permitted, so that the manual can accompany every copy of the program,
on-line or on paper.  Permission for modification is crucial too.
As a general rule, I don't believe that it is essential for people to
have permission to modify all sorts of articles and books.  The issues
for writings are not necessarily the same as those for software.  For
example, I don't think you or I are obliged to give permission to
modify articles like this one, which describe our actions and our
views.
But there is a particular reason why the freedom to modify is crucial
for documentation for free software.  When people exercise their right
to modify the software, and add or change its features, if they are
conscientious they will change the manual too—so they can provide
accurate and usable documentation with the modified program.  A manual
which forbids programmers to be conscientious and finish the job, or
more precisely requires them to write a new manual from scratch if
they change the program, does not fill our community's needs.
While a blanket prohibition on modification is unacceptable, some
kinds of limits on the method of modification pose no problem.  For
example, requirements to preserve the original author's copyright
notice, the distribution terms, or the list of authors, are ok.  It is
also no problem to require modified versions to include notice that
they were modified, even to have entire sections that may not be
deleted or changed, as long as these sections deal with nontechnical
topics.  (Some GNU manuals have them.)
These kinds of restrictions are not a problem because, as a practical
matter, they don't stop the conscientious programmer from adapting the
manual to fit the modified program.  In other words, they don't block
the free software community from making full use of the manual.
However, it must be possible to modify all the technical content of
the manual, and then distribute the result in all the usual media,
through all the usual channels; otherwise, the restrictions do block
the community, the manual is not free, and so we need another manual.
Unfortunately, it is often hard to find someone to write another
manual when a proprietary manual exists.  The obstacle is that many
users think that a proprietary manual is good enough—so they don't
see the need to write a free manual.  They do not see that the free
operating system has a gap that needs filling.
Why do users think that proprietary manuals are good enough? Some have
not considered the issue.  I hope this article will do something to
change that.
Other users consider proprietary manuals acceptable for the same
reason so many people consider proprietary software acceptable: they
judge in purely practical terms, not using freedom as a
criterion.  These people are entitled to their opinions, but since
those opinions spring from values which do not include freedom, they
are no guide for those of us who do value freedom.
Please spread the word about this issue.  We continue to lose manuals
to proprietary publishing.  If we spread the word that proprietary
manuals are not sufficient, perhaps the next person who wants to help
GNU by writing documentation will realize, before it is too late, that
he must above all make it free.
We can also encourage commercial publishers to sell free, copylefted
manuals instead of proprietary ones.  One way you can help this is to
check the distribution terms of a manual before you buy it, and prefer
copylefted manuals to non-copylefted ones.
Note: The Free Software Foundation maintains a page on its Web site
that lists free books available from other publishers:
http://www.gnu.org/doc/other-free-books.html

Appendix E. GNU Free Documentation License





Version 1.3, 3 November 2008




Copyright © 2000, 2001, 2002, 2007, 2008, 2009 Free Software Foundation, Inc.

http://fsf.org/



Everyone is permitted to copy and distribute verbatim copies

of this license document, but changing it is not allowed.



	PREAMBLE
The purpose of this License is to make a manual, textbook, or other
functional and useful document free in the sense of freedom: to
assure everyone the effective freedom to copy and redistribute it,
with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible
for modifications made by others.
This License is a kind of “copyleft”, which means that derivative
works of the document must themselves be free in the same sense.  It
complements the GNU General Public License, which is a copyleft
license designed for free software.
We have designed this License in order to use it for manuals for free
software, because free software needs free documentation: a free
program should come with manuals providing the same freedoms that the
software does.  But this License is not limited to software manuals;
it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book.  We recommend this License
principally for works whose purpose is instruction or reference.

	APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium, that
contains a notice placed by the copyright holder saying it can be
distributed under the terms of this License.  Such a notice grants a
world-wide, royalty-free license, unlimited in duration, to use that
work under the conditions stated herein.  The “Document”, below,
refers to any such manual or work.  Any member of the public is a
licensee, and is addressed as “you”.  You accept the license if you
copy, modify or distribute the work in a way requiring permission
under copyright law.
A “Modified Version” of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with
modifications and/or translated into another language.
A “Secondary Section” is a named appendix or a front-matter section
of the Document that deals exclusively with the relationship of the
publishers or authors of the Document to the Document's overall
subject (or to related matters) and contains nothing that could fall
directly within that overall subject.  (Thus, if the Document is in
part a textbook of mathematics, a Secondary Section may not explain
any mathematics.)  The relationship could be a matter of historical
connection with the subject or with related matters, or of legal,
commercial, philosophical, ethical or political position regarding
them.
The “Invariant Sections” are certain Secondary Sections whose titles
are designated, as being those of Invariant Sections, in the notice
that says that the Document is released under this License.  If a
section does not fit the above definition of Secondary then it is not
allowed to be designated as Invariant.  The Document may contain zero
Invariant Sections.  If the Document does not identify any Invariant
Sections then there are none.
The “Cover Texts” are certain short passages of text that are listed,
as Front-Cover Texts or Back-Cover Texts, in the notice that says that
the Document is released under this License.  A Front-Cover Text may
be at most 5 words, and a Back-Cover Text may be at most 25 words.
A “Transparent” copy of the Document means a machine-readable copy,
represented in a format whose specification is available to the
general public, that is suitable for revising the document
straightforwardly with generic text editors or (for images composed of
pixels) generic paint programs or (for drawings) some widely available
drawing editor, and that is suitable for input to text formatters or
for automatic translation to a variety of formats suitable for input
to text formatters.  A copy made in an otherwise Transparent file
format whose markup, or absence of markup, has been arranged to thwart
or discourage subsequent modification by readers is not Transparent.
An image format is not Transparent if used for any substantial amount
of text.  A copy that is not “Transparent” is called “Opaque”.
Examples of suitable formats for Transparent copies include plain
ascii without markup, Texinfo input format, LaTeX input
format, SGML or XML using a publicly available
DTD, and standard-conforming simple HTML,
PostScript or PDF designed for human modification.  Examples
of transparent image formats include PNG, XCF and
JPG.  Opaque formats include proprietary formats that can be
read and edited only by proprietary word processors, SGML or
XML for which the DTD and/or processing tools are
not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for
output purposes only.
The “Title Page” means, for a printed book, the title page itself,
plus such following pages as are needed to hold, legibly, the material
this License requires to appear in the title page.  For works in
formats which do not have any title page as such, “Title Page” means
the text near the most prominent appearance of the work's title,
preceding the beginning of the body of the text.
The “publisher” means any person or entity that distributes copies
of the Document to the public.
A section “Entitled XYZ” means a named subunit of the Document whose
title either is precisely XYZ or contains XYZ in parentheses following
text that translates XYZ in another language.  (Here XYZ stands for a
specific section name mentioned below, such as “Acknowledgements”,
“Dedications”, “Endorsements”, or “History”.)  To “Preserve the Title”
of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.
The Document may include Warranty Disclaimers next to the notice which
states that this License applies to the Document.  These Warranty
Disclaimers are considered to be included by reference in this
License, but only as regards disclaiming warranties: any other
implication that these Warranty Disclaimers may have is void and has
no effect on the meaning of this License.

	VERBATIM COPYING
You may copy and distribute the Document in any medium, either
commercially or noncommercially, provided that this License, the
copyright notices, and the license notice saying this License applies
to the Document are reproduced in all copies, and that you add no other
conditions whatsoever to those of this License.  You may not use
technical measures to obstruct or control the reading or further
copying of the copies you make or distribute.  However, you may accept
compensation in exchange for copies.  If you distribute a large enough
number of copies you must also follow the conditions in section 3.
You may also lend copies, under the same conditions stated above, and
you may publicly display copies.

	COPYING IN QUANTITY
If you publish printed copies (or copies in media that commonly have
printed covers) of the Document, numbering more than 100, and the
Document's license notice requires Cover Texts, you must enclose the
copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover.  Both covers must also clearly and legibly identify
you as the publisher of these copies.  The front cover must present
the full title with all words of the title equally prominent and
visible.  You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve
the title of the Document and satisfy these conditions, can be treated
as verbatim copying in other respects.
If the required texts for either cover are too voluminous to fit
legibly, you should put the first ones listed (as many as fit
reasonably) on the actual cover, and continue the rest onto adjacent
pages.
If you publish or distribute Opaque copies of the Document numbering
more than 100, you must either include a machine-readable Transparent
copy along with each Opaque copy, or state in or with each Opaque copy
a computer-network location from which the general network-using
public has access to download using public-standard network protocols
a complete Transparent copy of the Document, free of added material.
If you use the latter option, you must take reasonably prudent steps,
when you begin distribution of Opaque copies in quantity, to ensure
that this Transparent copy will remain thus accessible at the stated
location until at least one year after the last time you distribute an
Opaque copy (directly or through your agents or retailers) of that
edition to the public.
It is requested, but not required, that you contact the authors of the
Document well before redistributing any large number of copies, to give
them a chance to provide you with an updated version of the Document.

	MODIFICATIONS
You may copy and distribute a Modified Version of the Document under
the conditions of sections 2 and 3 above, provided that you release
the Modified Version under precisely this License, with the Modified
Version filling the role of the Document, thus licensing distribution
and modification of the Modified Version to whoever possesses a copy
of it.  In addition, you must do these things in the Modified Version:
	Use in the Title Page (and on the covers, if any) a title distinct
from that of the Document, and from those of previous versions
(which should, if there were any, be listed in the History section
of the Document).  You may use the same title as a previous version
if the original publisher of that version gives permission.

	List on the Title Page, as authors, one or more persons or entities
responsible for authorship of the modifications in the Modified
Version, together with at least five of the principal authors of the
Document (all of its principal authors, if it has fewer than five),
unless they release you from this requirement.

	State on the Title page the name of the publisher of the
Modified Version, as the publisher.

	Preserve all the copyright notices of the Document.

	Add an appropriate copyright notice for your modifications
adjacent to the other copyright notices.

	Include, immediately after the copyright notices, a license notice
giving the public permission to use the Modified Version under the
terms of this License, in the form shown in the Addendum below.

	Preserve in that license notice the full lists of Invariant Sections
and required Cover Texts given in the Document's license notice.

	Include an unaltered copy of this License.

	Preserve the section Entitled “History”, Preserve its Title, and add
to it an item stating at least the title, year, new authors, and
publisher of the Modified Version as given on the Title Page.  If
there is no section Entitled “History” in the Document, create one
stating the title, year, authors, and publisher of the Document as
given on its Title Page, then add an item describing the Modified
Version as stated in the previous sentence.

	Preserve the network location, if any, given in the Document for
public access to a Transparent copy of the Document, and likewise
the network locations given in the Document for previous versions
it was based on.  These may be placed in the “History” section.
You may omit a network location for a work that was published at
least four years before the Document itself, or if the original
publisher of the version it refers to gives permission.

	For any section Entitled “Acknowledgements” or “Dedications”, Preserve
the Title of the section, and preserve in the section all the
substance and tone of each of the contributor acknowledgements and/or
dedications given therein.

	Preserve all the Invariant Sections of the Document,
unaltered in their text and in their titles.  Section numbers
or the equivalent are not considered part of the section titles.

	Delete any section Entitled “Endorsements”.  Such a section
may not be included in the Modified Version.

	Do not retitle any existing section to be Entitled “Endorsements” or
to conflict in title with any Invariant Section.

	Preserve any Warranty Disclaimers.



If the Modified Version includes new front-matter sections or
appendices that qualify as Secondary Sections and contain no material
copied from the Document, you may at your option designate some or all
of these sections as invariant.  To do this, add their titles to the
list of Invariant Sections in the Modified Version's license notice.
These titles must be distinct from any other section titles.
You may add a section Entitled “Endorsements”, provided it contains
nothing but endorsements of your Modified Version by various
parties—for example, statements of peer review or that the text has
been approved by an organization as the authoritative definition of a
standard.
You may add a passage of up to five words as a Front-Cover Text, and a
passage of up to 25 words as a Back-Cover Text, to the end of the list
of Cover Texts in the Modified Version.  Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or
through arrangements made by) any one entity.  If the Document already
includes a cover text for the same cover, previously added by you or
by arrangement made by the same entity you are acting on behalf of,
you may not add another; but you may replace the old one, on explicit
permission from the previous publisher that added the old one.
The author(s) and publisher(s) of the Document do not by this License
give permission to use their names for publicity for or to assert or
imply endorsement of any Modified Version.

	COMBINING DOCUMENTS
You may combine the Document with other documents released under this
License, under the terms defined in section 4 above for modified
versions, provided that you include in the combination all of the
Invariant Sections of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined work in its
license notice, and that you preserve all their Warranty Disclaimers.
The combined work need only contain one copy of this License, and
multiple identical Invariant Sections may be replaced with a single
copy.  If there are multiple Invariant Sections with the same name but
different contents, make the title of each such section unique by
adding at the end of it, in parentheses, the name of the original
author or publisher of that section if known, or else a unique number.
Make the same adjustment to the section titles in the list of
Invariant Sections in the license notice of the combined work.
In the combination, you must combine any sections Entitled “History”
in the various original documents, forming one section Entitled
“History”; likewise combine any sections Entitled “Acknowledgements”,
and any sections Entitled “Dedications”.  You must delete all
sections Entitled “Endorsements.”

	COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents
released under this License, and replace the individual copies of this
License in the various documents with a single copy that is included in
the collection, provided that you follow the rules of this License for
verbatim copying of each of the documents in all other respects.
You may extract a single document from such a collection, and distribute
it individually under this License, provided you insert a copy of this
License into the extracted document, and follow this License in all
other respects regarding verbatim copying of that document.

	AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate
and independent documents or works, in or on a volume of a storage or
distribution medium, is called an “aggregate” if the copyright
resulting from the compilation is not used to limit the legal rights
of the compilation's users beyond what the individual works permit.
When the Document is included in an aggregate, this License does not
apply to the other works in the aggregate which are not themselves
derivative works of the Document.
If the Cover Text requirement of section 3 is applicable to these
copies of the Document, then if the Document is less than one half of
the entire aggregate, the Document's Cover Texts may be placed on
covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form.
Otherwise they must appear on printed covers that bracket the whole
aggregate.

	TRANSLATION
Translation is considered a kind of modification, so you may
distribute translations of the Document under the terms of section 4.
Replacing Invariant Sections with translations requires special
permission from their copyright holders, but you may include
translations of some or all Invariant Sections in addition to the
original versions of these Invariant Sections.  You may include a
translation of this License, and all the license notices in the
Document, and any Warranty Disclaimers, provided that you also include
the original English version of this License and the original versions
of those notices and disclaimers.  In case of a disagreement between
the translation and the original version of this License or a notice
or disclaimer, the original version will prevail.
If a section in the Document is Entitled “Acknowledgements”,
“Dedications”, or “History”, the requirement (section 4) to Preserve
its Title (section 1) will typically require changing the actual
title.

	TERMINATION
You may not copy, modify, sublicense, or distribute the Document
except as expressly provided under this License.  Any attempt
otherwise to copy, modify, sublicense, or distribute it is void, and
will automatically terminate your rights under this License.
However, if you cease all violation of this License, then your license
from a particular copyright holder is reinstated (a) provisionally,
unless and until the copyright holder explicitly and finally
terminates your license, and (b) permanently, if the copyright holder
fails to notify you of the violation by some reasonable means prior to
60 days after the cessation.
Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.
Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License.  If your rights have been terminated and not permanently
reinstated, receipt of a copy of some or all of the same material does
not give you any rights to use it.

	FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions
of the GNU Free Documentation License from time to time.  Such new
versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns.  See
http://www.gnu.org/copyleft/.
Each version of the License is given a distinguishing version number.
If the Document specifies that a particular numbered version of this
License “or any later version” applies to it, you have the option of
following the terms and conditions either of that specified version or
of any later version that has been published (not as a draft) by the
Free Software Foundation.  If the Document does not specify a version
number of this License, you may choose any version ever published (not
as a draft) by the Free Software Foundation.  If the Document
specifies that a proxy can decide which future versions of this
License can be used, that proxy's public statement of acceptance of a
version permanently authorizes you to choose that version for the
Document.

	RELICENSING
“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any
World Wide Web server that publishes copyrightable works and also
provides prominent facilities for anybody to edit those works.  A
public wiki that anybody can edit is an example of such a server.  A
“Massive Multiauthor Collaboration” (or “MMC”) contained in the
site means any set of copyrightable works thus published on the MMC
site.
“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0
license published by Creative Commons Corporation, a not-for-profit
corporation with a principal place of business in San Francisco,
California, as well as future copyleft versions of that license
published by that same organization.
“Incorporate” means to publish or republish a Document, in whole or
in part, as part of another Document.
An MMC is “eligible for relicensing” if it is licensed under this
License, and if all works that were first published under this License
somewhere other than this MMC, and subsequently incorporated in whole
or in part into the MMC, (1) had no cover texts or invariant sections,
and (2) were thus incorporated prior to November 1, 2008.
The operator of an MMC Site may republish an MMC contained in the site
under CC-BY-SA on the same site at any time before August 1, 2009,
provided the MMC is eligible for relicensing.



ADDENDUM: How to use this License for your documents
To use this License in a document you have written, include a copy of
the License in the document and put the following copyright and
license notices just after the title page:

  Copyright (C)  year  your name.
  Permission is granted to copy, distribute and/or modify this document
  under the terms of the GNU Free Documentation License, Version 1.3
  or any later version published by the Free Software Foundation;
  with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
  Texts.  A copy of the license is included in the section entitled ``GNU
  Free Documentation License''.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts,
replace the “with…Texts.” line with this:

    with the Invariant Sections being list their titles, with
    the Front-Cover Texts being list, and with the Back-Cover Texts
    being list.

If you have Invariant Sections without Cover Texts, or some other
combination of the three, merge those two alternatives to suit the
situation.
If your document contains nontrivial examples of program code, we
recommend releasing these examples in parallel under your choice of
free software license, such as the GNU General Public License,
to permit their use in free software.

Chapter . Index



Index



Symbols
	% (remainder function), Side Trip: Compute a Remainder
	(debug) in code, debug-on-quit and (debug)
	* (multiplication), The defun Special Form
	* for read-only buffer, A Read-only Buffer
	*scratch* buffer, An Example: print-elements-of-list
	.emacs file, Your .emacs File
	.emacs file, beginning of, Beginning a .emacs File
	/ (division), What happens in a large buffer
	<= (less than or equal), The parts of the function definition
	> (greater than), if in more detail
	‘argument list’ defined, The defun Special Form
	‘argument’ defined, Arguments
	‘bind’ defined, Setting the Value of a Variable
	‘body’ defined, The defun Special Form
	‘call’ defined, Switching Buffers
	‘command’ defined, How to Evaluate
	‘empty list’ defined, Lisp Atoms
	‘empty string’ defined, Review
	‘evaluate’ defined, Run a Program
	‘expression’ defined, Lisp Atoms
	‘form’ defined, Lisp Atoms
	‘function definition’ defined, The defun Special Form
	‘function’ defined, Generate an Error Message
	‘global variable’ defined, Determining the Element
	‘if-part’ defined, if in more detail
	‘interactive function’ defined, How to Evaluate
	‘local variable’ defined, let Prevents Confusion
	‘narrowing’ defined, Buffer Size and the Location of Point
	‘point’ defined, Buffer Size and the Location of Point
	‘returned value’ explained, How the Lisp Interpreter Acts
	‘side effect’ defined, How the Lisp Interpreter Acts
	‘string’ defined, Lisp Atoms
	‘then-part’ defined, if in more detail
	‘variable, global’, defined, Determining the Element
	‘variable, local’, defined, let Prevents Confusion
	‘varlist’ defined, The Parts of a let Expression


A
	Accumulate, type of recursive pattern, Recursive Pattern: accumulate
	add-hook, Text and Auto Fill Mode
	and, The kill-new function, The let* expression
	Anonymous function, A lambda Expression: Useful Anonymity
	append-to-buffer, The Definition of append-to-buffer
	apply, Printing the Columns of a Graph
	apropos, Printing the Columns of a Graph
	Argument as local variable, Putting the function definition together
	Argument, wrong type of, Using the Wrong Type Object as an Argument
	Arguments, Arguments
	Arguments' data types, Arguments' Data Types
	Arguments, variable number of, Variable Number of Arguments
	Asterisk for read-only buffer, A Read-only Buffer
	Auto Fill mode turned on, Text and Auto Fill Mode
	autoload, Autoloading
	Automatic mode selection, Text and Auto Fill Mode
	Axis, print horizontal, The print-X-axis Function
	Axis, print vertical, The print-Y-axis Function


B
	beginning-of-buffer, Complete Definition of beginning-of-buffer
	Bindings, key, fixing unpleasant, Miscellaneous Settings for a .emacs File
	Body of graph, Readying a Graph
	Buffer size, Buffer Size and the Location of Point
	Buffer, history of word, Buffer Names
	buffer-file-name, Buffer Names
	buffer-menu, bound to key, Some Keybindings
	buffer-name, Buffer Names
	Bug, most insidious type, Another Bug … Most Insidious
	Building robots, Building Robots: Extending the Metaphor
	Building Tags in the Emacs sources, Create Your Own TAGS File
	Byte compiling, Byte Compiling


C
	C language primitives, An Aside about Primitive Functions
	C, a digression into, Digression into C
	cancel-debug-on-entry, debug-on-entry
	car, introduced, car, cdr, cons: Fundamental Functions
	cdr, introduced, car, cdr, cons: Fundamental Functions
	Changing a function definition, Change a Function Definition
	Chest of Drawers, metaphor for a symbol, Symbols as a Chest of Drawers
	Clipping text, Cutting and Storing Text
	Code installation, Install Code Permanently
	Comments in Lisp code, Change a Function Definition
	Common Lisp, Lisp History
	compare-windows, Some Keybindings
	concat, Arguments' Data Types
	cond, Recursion Example Using cond
	condition-case, condition-case
	Conditional 'twixt two versions of Emacs, A Simple Extension: line-to-top-of-window
	Conditional with if, The if Special Form
	cons, introduced, cons
	copy-region-as-kill, copy-region-as-kill
	copy-to-buffer, The Definition of copy-to-buffer
	Count words recursively, Count Words Recursively
	count-words-in-defun, The count-words-in-defun Function
	count-words-region, The count-words-region Function
	Counting, Counting
	Counting words in a defun, Counting Words in a defun, The count-words-in-defun Function
	current-buffer, Getting Buffers
	current-kill, The current-kill Function
	Customizing your .emacs file, Your .emacs File
	Cutting and storing text, Cutting and Storing Text


D
	Data types, Arguments' Data Types
	debug, debug
	debug-on-entry, debug-on-entry
	debug-on-quit, debug-on-quit and (debug)
	debugging, Debugging
	default.el init file, Site-wide Initialization Files
	defconst, Specifying Variables using defcustom
	defcustom, Specifying Variables using defcustom
	Deferment in recursion, Recursion without Deferments
	Defermentless solution, No Deferment Solution
	Definition installation, Install a Function Definition
	Definition writing, How To Write Function Definitions
	Definition, how to change, Change a Function Definition
	defsubst, Specifying Variables using defcustom
	defun, The defun Special Form
	defvar, Initializing a Variable with defvar
	defvar for a user customizable variable, defvar and an asterisk
	defvar with an asterisk, defvar and an asterisk
	delete-and-extract-region, Digression into C
	Deleting text, Cutting and Storing Text
	describe-function, A Simplified beginning-of-buffer Definition
	describe-function, introduced, Finding More Information
	Digression into C, Digression into C
	directory-files, Making a List of Files
	Division, What happens in a large buffer
	dolist, The dolist Macro
	dotimes, The dotimes Macro
	Drawers, Chest of, metaphor for a symbol, Symbols as a Chest of Drawers
	Duplicated words function, The the-the Function


E
	edebug, The edebug Source Level Debugger
	Else, If–then–else Expressions
	Emacs version, choosing, A Simple Extension: line-to-top-of-window
	eobp, The forward motion while loop
	eq, Review
	eq (example of use), last-command and this-command
	equal, Review
	Erasing text, Cutting and Storing Text
	error, The Body of current-kill
	Error for symbol without function, Error Message for a Symbol Without a Function
	Error for symbol without value, Error Message for a Symbol Without a Value
	Error message generation, Generate an Error Message
	etags, Create Your Own TAGS File
	Evaluating inner lists, Evaluating Inner Lists
	Evaluation, Evaluation
	Evaluation practice, Practicing Evaluation
	Every, type of recursive pattern, Recursive Pattern: every
	Example variable, fill-column, fill-column, an Example Variable


F
	Falsehood and truth in Emacs Lisp, Truth and Falsehood in Emacs Lisp
	FDL, GNU Free Documentation License, GNU Free Documentation License
	files-in-below-directory, Making a List of Files
	fill-column, an example variable, fill-column, an Example Variable
	filter-buffer-substring, last-command and this-command
	Find a File, Find a File
	Find function documentation, Finding More Information
	Find source of function, Finding More Information
	find-tag, Finding More Information
	Flowers in a field, Lisp Lists
	Focusing attention (narrowing), Narrowing and Widening
	Formatting convention, save-excursion in append-to-buffer
	Formatting help, GNU Emacs Helps You Type Lists
	forward-paragraph, forward-paragraph: a Goldmine of Functions
	forward-sentence, forward-sentence
	Function definition installation, Install a Function Definition
	Function definition writing, How To Write Function Definitions
	Function definition, how to change, Change a Function Definition
	Functions, primitive, An Aside about Primitive Functions


G
	Generate an error message, Generate an Error Message
	Getting a buffer, Getting Buffers
	Global set key, Some Keybindings
	global-set-key, Some Keybindings
	global-unset-key, Some Keybindings
	Graph prototype, Readying a Graph
	Graph, printing all, Printing the Whole Graph
	graph-body-print, The graph-body-print Function
	graph-body-print Final version., Changes for the Final Version


H
	Handling the kill ring, Handling the Kill Ring
	Help typing lists, GNU Emacs Helps You Type Lists
	Horizontal axis printing, The print-X-axis Function


I
	if, The if Special Form
	indent-tabs-mode, Indent Tabs Mode
	Indentation for formatting, save-excursion in append-to-buffer
	Initialization file, Your .emacs File
	Initializing a variable, Initializing a Variable with defvar
	Inner list evaluation, Evaluating Inner Lists
	insert-buffer, The Definition of insert-buffer
	insert-buffer, new version body, New Body for insert-buffer
	insert-buffer-substring, An Overview of append-to-buffer
	Insidious type of bug, Another Bug … Most Insidious
	Install a Function Definition, Install a Function Definition
	Install code permanently, Install Code Permanently
	interactive, Make a Function Interactive
	Interactive functions, Make a Function Interactive
	Interactive options, Different Options for interactive
	interactive, example use of, The Interactive Expression in insert-buffer
	Interpreter, Lisp, explained, Run a Program
	Interpreter, what it does, The Lisp Interpreter


K
	Keep, type of recursive pattern, Recursive Pattern: keep
	Key bindings, fixing, Miscellaneous Settings for a .emacs File
	Key setting globally, Some Keybindings
	Key unbinding, Some Keybindings
	Keymaps, Keymaps
	Keyword, Optional Arguments
	Kill ring handling, Handling the Kill Ring
	Kill ring overview, Kill Ring Overview
	kill-append, The kill-append function
	kill-new, The kill-new function
	kill-region, kill-region
	Killing text, Cutting and Storing Text


L
	lambda, A lambda Expression: Useful Anonymity
	length, Find the Length of a List: length
	lengths-list-file, lengths-list-file in Detail
	lengths-list-many-files, Determine the lengths of defuns
	let, let
	let expression sample, Sample let Expression
	let expression, parts of, The Parts of a let Expression
	let variables uninitialized, Uninitialized Variables in a let Statement
	Library, as term for `file', Finding More Information
	line-to-top-of-window, A Simple Extension: line-to-top-of-window
	Lisp Atoms, Lisp Atoms
	Lisp history, Lisp History
	Lisp interpreter, explained, Run a Program
	Lisp interpreter, what it does, The Lisp Interpreter
	Lisp Lists, Lisp Lists
	Lisp macro, Lisp macro
	list-buffers, rebound, Some Keybindings
	Lists in a computer, How Lists are Implemented
	load-library, Loading Files
	load-path, Loading Files
	Loading files, Loading Files
	Local variables list, per-buffer,, Text and Auto Fill Mode
	Location of point, Buffer Size and the Location of Point
	looking-at, The forward motion while loop
	Loops, while
	Loops and recursion, Loops and Recursion


M
	Maclisp, Lisp History
	Macro, lisp, Lisp macro
	Mail aliases, Mail Aliases
	make tags, Create Your Own TAGS File
	make-string, Construct a Y Axis Element
	mapcar, The mapcar Function
	mark, save-excursion
	mark-whole-buffer, The Definition of mark-whole-buffer
	match-beginning, The forward motion while loop
	max, Printing the Columns of a Graph
	message, The message Function
	min, Printing the Columns of a Graph
	Mode line format, A Modified Mode Line
	Mode selection, automatic, Text and Auto Fill Mode
	mode-line-format, A Modified Mode Line
	Motion by sentence and paragraph, Regular Expression Searches


N
	Narrowing, Narrowing and Widening
	new version body for insert-buffer, New Body for insert-buffer
	nil, Truth and Falsehood in Emacs Lisp
	nil, history of word, Buffer Names
	No deferment solution, No Deferment Solution
	nreverse, Counting function definitions
	nth, nth
	nthcdr, nthcdr, copy-region-as-kill
	nthcdr, example, The kill-new function
	number-to-string, Construct a Y Axis Element


O
	occur, Some Keybindings
	optional, Optional Arguments
	Optional arguments, Optional Arguments
	Options for interactive, Different Options for interactive
	or, The or in the Body
	other-buffer, Getting Buffers


P
	Paragraphs, movement by, Regular Expression Searches
	Parts of a Recursive Definition, The Parts of a Recursive Definition
	Parts of let expression, The Parts of a let Expression
	Passing information to functions, Arguments
	Pasting text, Yanking Text Back
	Patterns, searching for, Regular Expression Searches
	Per-buffer, local variables list, Text and Auto Fill Mode
	Permanent code installation, Install Code Permanently
	point, save-excursion
	Point location, Buffer Size and the Location of Point
	Point, mark, buffer preservation, save-excursion
	Practicing evaluation, Practicing Evaluation
	Preserving point, mark, and buffer, save-excursion
	Primitive functions, An Aside about Primitive Functions
	Primitives written in C, An Aside about Primitive Functions
	Print horizontal axis, The print-X-axis Function
	Print vertical axis, The print-Y-axis Function
	print-elements-of-list, An Example: print-elements-of-list
	print-elements-recursively, Recursion with a List
	print-graph Final version., Changes for the Final Version
	print-graph varlist, The print-graph Varlist
	print-X-axis, X Axis Tic Marks
	print-X-axis-numbered-line, X Axis Tic Marks
	print-X-axis-tic-line, X Axis Tic Marks
	print-Y-axis, The Not Quite Final Version of print-Y-axis
	Printing the whole graph, Printing the Whole Graph
	progn, The progn Special Form
	Program, running one, Run a Program
	Properties, in mode line example, A Modified Mode Line
	Properties, mention of buffer-substring-no-properties, Exercise with Narrowing
	Prototype graph, Readying a Graph
	push, example, The kill-new function


R
	re-search-forward, The re-search-forward Function
	Read-only buffer, A Read-only Buffer
	Readying a graph, Readying a Graph
	Rebinding keys, Keymaps
	Recursion, Recursion
	Recursion and loops, Loops and Recursion
	Recursion without Deferments, Recursion without Deferments
	Recursive Definition Parts, The Parts of a Recursive Definition
	Recursive pattern: accumulate, Recursive Pattern: accumulate
	Recursive pattern: every, Recursive Pattern: every
	Recursive pattern: keep, Recursive Pattern: keep
	Recursive Patterns, Recursive Patterns
	recursive-count-words, Count Words Recursively
	recursive-graph-body-print, The recursive-graph-body-print Function
	recursive-lengths-list-many-files, Recursively Count Words in Different Files
	Recursively counting words, Count Words Recursively
	regexp-quote, The let* expression
	Region, what it is, save-excursion
	Regular expression searches, Regular Expression Searches
	Regular expressions for word counting, Counting: Repetition and Regexps
	Remainder function, %, Side Trip: Compute a Remainder
	Repetition (loops), Loops and Recursion
	Repetition for word counting, Counting: Repetition and Regexps
	Retrieving text, Yanking Text Back
	reverse, Counting function definitions
	Ring, making a list like a, Handling the Kill Ring
	ring.el file, The ring.el File
	Robots, building, Building Robots: Extending the Metaphor
	Run a program, Run a Program


S
	Sample let expression, Sample let Expression
	save-excursion, save-excursion
	save-restriction, The save-restriction Special Form
	search-forward, The search-forward Function
	Searches, illustrating, Regular Expression Searches
	sentence-end, The Regular Expression for sentence-end
	Sentences, movement by, Regular Expression Searches
	set, Using set
	set-buffer, Switching Buffers
	set-variable, defvar and an asterisk
	setcar, setcar
	setcdr, setcdr
	setcdr, example, The kill-new function
	setq, Using setq
	Setting a key globally, Some Keybindings
	Setting value of variable, Setting the Value of a Variable
	Simple extension in .emacs file, A Simple Extension: line-to-top-of-window
	simplified-beginning-of-buffer, A Simplified beginning-of-buffer Definition
	site-init.el init file, Site-wide Initialization Files
	site-load.el init file, Site-wide Initialization Files
	Size of buffer, Buffer Size and the Location of Point
	Solution without deferment, No Deferment Solution
	sort, Sorting Lists
	Source level debugger, The edebug Source Level Debugger
	Special form, Complications
	Special form of defun, The defun Special Form
	Storing and cutting text, Cutting and Storing Text
	switch-to-buffer, Switching Buffers
	Switching to a buffer, Switching Buffers
	Symbol names, Symbol Names and Function Definitions
	Symbol without function error, Error Message for a Symbol Without a Function
	Symbol without value error, Error Message for a Symbol Without a Value
	Symbolic expressions, introduced, Lisp Atoms
	Symbols as a Chest of Drawers, Symbols as a Chest of Drawers
	Syntax categories and tables, What Constitutes a Word or Symbol?


T
	Tabs, preventing, Indent Tabs Mode
	TAGS file, create own, Create Your Own TAGS File
	Tags in the Emacs sources, Create Your Own TAGS File
	TAGS table, specifying, Finding More Information
	Text between double quotation marks, Lisp Atoms
	Text Mode turned on, Text and Auto Fill Mode
	Text retrieval, Yanking Text Back
	the-the, The the-the Function
	top-of-ranges, Counting function definitions
	triangle-bugged, debug
	triangle-recursively, Recursion in Place of a Counter
	Truth and falsehood in Emacs Lisp, Truth and Falsehood in Emacs Lisp
	Types of data, Arguments' Data Types


U
	Unbinding key, Some Keybindings
	Uninitialized let variables, Uninitialized Variables in a let Statement


V
	Variable initialization, Initializing a Variable with defvar
	Variable number of arguments, Variable Number of Arguments
	Variable, example of, fill-column, fill-column, an Example Variable
	Variable, setting value, Setting the Value of a Variable
	Variables, Variables
	Version of Emacs, choosing, A Simple Extension: line-to-top-of-window
	Vertical axis printing, The print-Y-axis Function


W
	what-line, what-line
	while, while
	Whitespace in lists, Whitespace in Lists
	Whole graph printing, Printing the Whole Graph
	Widening, Narrowing and Widening
	Widening, example of, what-line
	Word counting in a defun, Counting Words in a defun
	Words and symbols in defun, What to Count?
	Words, counted recursively, Count Words Recursively
	Words, duplicated, The the-the Function
	Writing a function definition, How To Write Function Definitions
	Wrong type of argument, Using the Wrong Type Object as an Argument


X
	X axis printing, The print-X-axis Function
	X-axis-element, X Axis Tic Marks


Y
	Y axis printing, The print-Y-axis Function
	Y-axis-column, Create a Y Axis Column
	Y-axis-column Final version., Changes for the Final Version
	Y-axis-label-spacing, Side Trip: Compute a Remainder
	Y-axis-tic, Construct a Y Axis Element
	yank, Yanking Text Back, yank
	yank-pop, yank-pop


Z
	zap-to-char, zap-to-char
	zerop, The Body of current-kill





Chapter . About the Author



Robert J. Chassell has worked with GNU Emacs since 1985.  He writes
and edits, teaches Emacs and Emacs Lisp, and speaks throughout the
world on software freedom.  Chassell was a founding Director and
Treasurer of the Free Software Foundation, Inc.  He is co-author of
the Texinfo manual, and has edited more than a dozen other
books.  He graduated from Cambridge University, in England.  He has an
abiding interest in social and economic history and flies his own
airplane.



OEBPS/productimage-picture-intro_to_emacs_lisp_3rd_ed-71_t200.png
Emacs Lisp






