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Preface

This book is devoted to a problem that lies at the crossroad of several sci-
ences: statistics, geometry, celestial mechanics and computational astronomy,
the problem of dating ancient star catalogs from an analysis of their contents,
on the basis of modern knowledge of how the visible picture of the sky evolves
with time. A vivid example is the problem of dating the star catalog of the
famous Ptolemy’s Almagest. The problem has a long and involved history; see
a review of publications on the subject in the book of R. Newton'.

The Almagest is traditionally attributed to Claudius Ptolemy (about the
2nd century AD). Yet, some investigations (mainly, the ones carried out in the
18th-19th centuries) revealed some contradictions between the astronomic
data contained in the catalog and the astronomic reality of the 2nd century
AD. This led to a hypothesis that Ptolemy had in fact used for the Almagest
a star catalog compiled by Hipparchus (whose lifetime is traditionally attrib-
uted to the 2nd century BC), presumably having added some observations
of his own. The reader can find a discussion of this hypothesis (and some
others) in classical works®>. A more recent book of R. Newton! presents
a thorough statistical and astronomical analysis of the Almagest as a whole,
and in particular of the star catalog it contains. R. Newton contends that his
analysis gives an irrefutable proof of most observational data contained in the
catalog being counterfeit. In any case R. Newton insists on the necessity of
an overall revision of our views of the position and the role of the Almagest in
the history of science. In fact, a similar conclusion and the inference that an
essential redating of the Almagest is necessary had been suggested long before
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1\% PREFACE

R. Newton by N. A. Morozov in his fundamental book History in the Light of
Natural Sciences, published in 1928-1932 under the title Khristos (Christ) (see
Ref. 4). It should be noted that the astronomical and mathematical arguments
of N. A. Morozov are diverse from the ones of R. Newton, but they lead to
a similar conclusion about the necessity of a revision of the traditional views
of the Almagest. A lot of additional criticism on the subject can be found in
the cycle of works of A. T. Fomenko® 13, devoted to the development of new
empirico-statistical methods for detecting dependent narrative texts and for
dating the events they describe (in particular, astronomic events).

We stress, however, that the investigations we expose in this book are
completely independent of the methods and arguments used in the afore-
mentioned works and that we do not use the hypotheses suggested therein.

In this book we suggest a new method for dating ancient star catalogs. The
method uses, in particular, the investigation of proper motions of stars. Since
these motions are now measured with a very high accuracy (on the basis of
astronomic observations of the last two centuries), it is possible to compute
the positions of stars in the past. Comparing these with the ones indicated in
a star catalog, we can try to determine the time when the observations were
made, and consequently the approximate time of compilation of the catalog.
However, a practical implementation of this seemingly simple idea encounters
major difficulties, both of technical and fundamental nature. Coping with
these difficulties requires the new statistico-geometrical method we present
in this book. The foundations of the method have been exposed in Refs. 14
and 15. Our approach involves both statistical and geometrical ideas; the
latter are necessary because of the geometrical nature of the object we deal
with, the evolution of a point set (the set of stars) in the celestial sphere.

We have tested the method on some reliably dated medieval star catalogs,
and also on some artificially created catalogs. In the latter case the catalogs
were compiled with the help of a computer; of course, the compiler knew the
“date of compilation”, but the researcher did not. The date was sealed in
an envelope to be unsealed only after getting a date from the method. The
procedure proved the efficiency of the method: the “date of compilation” was
always within the interval it produced.

Then we applied the method to the star catalog of the Almagest. The
results thus obtained contradict the traditionally accepted date and imply the
necessity of its considerable “rejuvenating”.

The main body of this book does not involve any historical questions or
questions concerning the origins of the data. Thus, we concentrate on the
contents of the star catalog itself, and do not even raise any questions con-
cerning the rest of the Almagest (the star catalog constitutes the seventh and
the eighth books of the Almagest).

However, for the reader’s convenience, we have supplemented the book
with the Addendum containing an exposition of some problems and conjec-
tures on dating the Almagest as a whole. We should stress once more that
the main body of the book is entirely independent of the Addendum. The
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Addendum is intended for a reader wishing to proceed with the study of the
questions we raise in the main body of the book toward understanding the
origins of the data. A reader interested in mathematical and astronomical
aspects alone may confine himself to the main body of the book.

The structure of the book is the following.

The Introduction provides a brief review of the contents of the Almagest,
and in particular of its star catalog. We also give a brief review of other star
catalogs and explain our interest in the problem of dating catalogs.

Chapter 1 provides some necessary information from astronomy, astrome-
try and history of observational equipment and methods for measuring coor-
dinates of stars.

In Chapter 2, we carry out a preliminary analysis of the star catalog of the
Almagest. We discuss here various problems that arise in connection with the
catalog (for example, the ambiguity in identification of stars), the accuracy of
altitudes and longitudes in the catalog, and some peculiarities of the catalog
(such as the Peters’ sine curve).

In Chapter 3, we analyze some attempts to date the star catalog of the
Almagest based on the most obvious ideas. We show that no straightforward
elementary methods lead to a reliable date, and reveal the difficulties behind
these failures.

In Chapter 4, we start the description of our new method for dating star
catalogs. Here we discuss the “Who is who?” problem, the problem of iden-
tification of the stars described in the catalog with the ones known in modern
astronomy.

Chapter 5 presents mathematical backgrounds for the statistical analysis
of the catalog. Here we classify various errors that occur in the catalog, and
suggest methods for their detection and for compensation for the systematic
component.

In Chapter 6, we carry out a global statistical processing of the catalog and
of its basic parts. We apply several statistical characteristics to various pieces
of the celestial sphere, which enables us to distinguish the “well-measured”
and “poorly measured” pieces. The ensuing decomposition of the sky into the
“homogeneous areas” (with contrasting accuracy of measurement) implies a
new view of the structure of the Almagest.

In Chapter 7, we apply two different dating procedures, statistical and geo-
metrical, to the catalog of the Almagest; the two estimates turn out to agree.

In Chapter 8, we suggest an explanation for the “Peters’ sine curve”, based
on the previous results; we also discuss here the value of the angle between
the equatorial plane and the ecliptic given in the Almagest.

In Chapter 9, we apply our method to the catalogs of Tycho Brahe, Ulugh
Beg, Hevelius and Al Sifi (As-Sifi).

Chapter 10 is devoted to determination of the date using other parts of
the Almagest. The ensuing results demonstrate perfect agreement with our
date for the star catalog. Finally, we obtain the period of time that captures
the observations fixed in the Almagest (500-1350 AD), and reconstruct
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the “Ptolemaic chronology”, that is, Ptolemy’s concepts of global chronology
(nowadays concealed by the erroneous tradition of recalculating Ptolemy’s
dates into the years AD). It turns out that similar concepts can be found
in several sources of the 13th-14th centuries. Thus, the Almagest keeps to
a chronological tradition, nowadays forgotten, but actual in the 13th-14th
centuries, which differs much from the chronology we are used to today.

The book is concluded by the Addendum, containing a brief review of prob-
lems connected with dating the Almagest as a whole. We treat this material
as supplementary, and do not use it in the main body of the book, although it
is probably of some epistemological interest.

The book is supplemented with tables containing some astronomic data
we use in the text.

The book contains a lot of material represented in tabular and graphical
form. We call reader’s attention to figures and graphs, which contain much
important information, necessary for a fuller understanding of the book. We
number the figures and tables consecutively within every chapter and chapter
number precedes the number of the figure. Thus “see Figure 2.1” means “see
Figure 1 in Chapter 2”.

We use the techniques of mathematical statistics, modern geometry, celes-
tial mechanics and astrometry. Therefore some chapters require an acquain-
tance with basic mathematical notions. Yet, we tried to make the mathematics
we used as simple as possible, and we hope that this book will be accessible to a
reader familiar with the elements of mathematics at the level of a second-year
student in mathematics. The book is intended not only for specialists in natu-
ral sciences, but also for the historians interested in modern mathematical and
statistical methods. See also the book: A. T. Fomenko, Empirico-Statistical
Methods for Analysis of Narrative and Numerical Sources with Applications to
the Problems of Ancient and Medieval History and Chronology, vols. 1,2. Kluwer
Acad. Publ. (in print).

The authors are indebted to Academicians E. P. Velikhov, Yu. V. Prokhorov,
Yu. I. Zhuravlev, B. V. Gnedenko and A. S. Zaimovski, Professors
V. M. Zolotarev, V. M. Kruglov, V. V. Kozlov, V. K. Abalakin, V. G. Demin,
A. V. Nagaev, Yu. N. Tyurin, Yu. K. Belyaev, 1. G. Zhurbenko, E. V. Chepurin,
Yu. M. Sukhov and S. A. Aivazian for helpful discussions and support they pro-
vided in writing this book. We thank Professors H.-J. Lenz, T. Z. Nguen,
Yu. V. Deikalo, E. S. Gavrilenko, M. R. Vovchenko, V. V. Kalashnikov
(junior), A. A. Borisenko, Yu. G. Fomin, C. Yu. Zholkov, T. S. Turova,
O. Yu. Soboleva and Yu. A. Tyurina for their valuable help in processing
numerical data, analyzing sources (rare printed editions and manuscripts)
and helpful consultations on the subjects.

We thank E. K. Orlova for her selfless help in preparation of the manuscript
of this book.

A. T Fomenko
V. V. Kalashnikov
G. V. Nosovsky
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Introduction

1. Brief description of the Aimagest

The Almagest is a famous work of an Alexandrite astronomer, mathemati-
cian and philosopher Claudius Ptolemy, whose lifetime is traditionally attrib-
uted to the 2nd century AD. We give some information about Ptolemy below;
it should be noted, however, that “history treated somewhat strangely the
person and the works of Ptolemy. Historians of his time never mention his
life and activities ... . No facts of his life, neither the dates of his birth and
death are known” (Ref. 16, p. 96).

It is traditionally considered that the Almagest was created in the reign of
Roman emperor Antoninus Pius (131-161 AD).

The Almagest contains 13 books, about 1000 pages in total volume (in
modern editions).

The first book contains basic concepts and constructions, of which the fol-
lowing should be mentioned: 1) The firmament is spherical, and rotates like a
sphere; 2) The earth is a sphere, disposed at the center of the universe; 3) The
earth can be considered as a point in comparison with the distances to the
sphere of fixed stars; 4) The earth does not alter its position in space (does not
move). As Ptolemy notes, these principles are based on the conclusions of
Aristotle’s philosophy. Further, the first and the second books contain an ex-
position of elements of spherical astronomy (theorems on spherical triangles,
a method for calculating arcs (angles) from the lengths of their spans, etc.).

1



2 INTRODUCTION

The third book presents a theory of visible solar motion and a discussion of
the dates of equinoxes, the length of the year, etc. The fourth book treats the
length of the synodic month and the theory of lunar motion. The fifth book is
devoted to the construction of some astronomic instruments and to a further
development of the theory of the moon. The sixth book exposes a theory of
solar and lunar eclipses.

The famous star catalog (comprising more than 1000 stars) is contained in
the seventh and eighth books of the Almagest. The books contain the catalog
and a discussion of properties of fixed stars, of motion of the celestial sphere,
etc.

The last five books of the Almagest are devoted to the theory of motion
of planets (Ptolemy considers five planets, Saturn, Jupiter, Mars, Venus and
Mercury).

2. A brief review of the history of the Aimagest

It is commonly accepted that the Almagest was created in the reign of An-
toninus Pius (131-161 AD) and that the last observation included therein
had been made on February 2, 141 AD. The Greek title of the Almagest,
pabnuatikn ovvraéic, implies that the Almagest exposes the state-of-the-
art of contemporary Greek astronomy. Nowadays it is not known whether
any other astronomical treatises comparable to the Almagest existed at the
time. Usually, the tremendous success of the Almagest (with astronomers, as
well as with other scientists) is attributed!’ to the loss of most of the astro-
nomic treatises of the time. The Almagest had become the basic textbook in
astronomy (as is considered nowadays) for more than a thousand years. It
influenced greatly the late medieval astronomy, both in Islamic and Christian
regions, up to the 16th century. The influence of this book might be only
compared to the influence of Euclid’s Elements on the medieval science.

As noted, for example, by Toomer (Ref. 17, p. 2), it is extremely difficult
to trace the history of the Almagest and its influences from the 2nd century
AD to the Middle Ages. Commentaries of Pappus and Theon of Alexandria
are the usual source for judgment on the role of the Almagest as a standard
textbook in astronomy for “advanced students” in the schools at Alexandria in
late antiquity. Further, a “period of darkness” comes. We will only note here
the following description of this period: “After the exciting blossoming forth
of antique culture, on the European continent a long period of stagnation,
sometimes even of regress, began, usually referred to as Middle Ages ... Over
more than 1000 years not a single essential discovery in astronomy was made
... 7 (Ref. 17, p. 73).

Furthermore, it is believed that in the 8th and the 9th centuries, in connec-
tion with growing interest in Greek science in the Islamic world, the Almagest
was “raised from the darkness” and was translated, first into Syrian and later,
several times, into Arabic. By the middle of the 12th century at least five
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versions of the translations existed. It is presumed that while in the East (in
particular, in Byzantium), the work of Ptolemy, originally written in Greek,
was being copied and, to some extent, studied, “all knowledge of it was lost
to western Europe by the early middle ages. Although translations from the
Greek text into Latin were made in medieval times, the principal channel for
the recovery of the Almagest in the west was the translation from the Arabic
by Gerard of Cremona, made at Toledo and completed in 1175. Manuscripts
of the Greek text (of the Almagest — Authors) began to reach the west in the
fifteenth century, but it was Gerard’s text which underlay (often at several
removes) books on astronomy as late as the Peurbach-Regiomontanus epit-
ome of the Almagest . . . 1t was also the version in which the Almagest was first
printed (Venice, 1515). The sixteenth century saw the wide dissemination of
the Greek text (printed at Basel by Hervagius, 1538), and also the obsolence
of Ptolemy’s astronomical system, brought about not so much by the work of
Copemnicus (which in form and concepts is still dominated by the Almagest)
as by that of Brahe and Kepler” (Ref. 17, pp. 2-3).

3. Basic medieval star catalogs

The catalog of the Almagest is the only extant antique star catalog; it is tra-
ditionally dated about the 2nd century AD. It is considered, however, that
Ptolemy used the star catalog compiled by his predecessor Hipparchus about
the 2nd century BC. The Almagest catalog (as well as other catalogs of later
origin) comprises about 1000 stars, whose positions are described in terms
of their longitudes and latitudes (see below for details). After Ptolemy, the
“period of darkness and regress” in the history of astronomy (and in the his-
tory of all natural sciences) begins, and we know of no other star catalogs up
to the 10th century. Finally, only as late as in the 10th century (according
to the traditional chronology) was the first medieval catalog created, the one
composed by Arabic astronomer As-Siifi (Abd Al Rahman Al Sifi, 903-966)
in Baghdad. This catalog has come down to us. The next at our disposal is the
Ulugh Beg star catalog (1394-1449, Samarkand). The three catalogs are not
very precise: they indicate the coordinates of stars to an accuracy within 10
minutes of arc. The next extant is the famous catalog of Tycho Brahe (1546—
1601), the precision of which is an order of magnitude better than that of the
three preceding catalogs. Brahe’s catalog is the acme of skill reached with
the help of medieval methods and instruments for astronomical observations.
We stop our enumeration here and do not list the catalogs created after Tycho
Brahe (there were many, and they are of no interest to us here).

4. Why dating star catalogs is interesting

Every star catalog comprising about 1000 stars is a result of a lot of obser-
vations made by an astronomer (even more likely, by a group of professional
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observers), which required much effort, thoroughness and professionalism,
and also an utmost use of available measuring instruments, which were made
at the highest contemporary level. Moreover, a catalog required a proper
astronomic theory, a world view. Thus, every ancient catalog is a focus of the
astronomic mind of the age. So, analyzing a catalog we can learn much about
the available accuracy of measurement, the astronomic ideas of the time, etc.

But to understand properly the results of the analysis, we need to know
the time when the catalog was compiled. Any variation in the date alters
automatically our estimates and conclusions about the catalog. Meanwhile,
to determine the date of compilation of a catalog is far from easy. This is very
well seen in the case of the Almagest. First (in the 18th century), the tradi-
tional version attributing the catalog to Ptolemy, about the 2nd century AD,
was indisputably accepted. In the 19th century, a more thorough analysis of
longitudes of stars indicated in the Almagest showed (we describe the details
below) that they are more likely to belong to the 2nd century BC, that is, to
the time of Hipparchus.

The catalog, contained in the seventh and the eighth books of the Al-
magest, comprises 1028 stars (three of which are duplicates). It contains not
a single star that could be observed by Ptolemy from Alexandria, but not
by Hipparchus from Rhodes. Moreover, Ptolemy claimed that he had de-
termined, from comparison of his observations with the ones of Hipparchus
and others, the magnitude of precession 38 (which is erroneous), treated by
Hipparchus as the least possible value, and by Ptolemy, as the final estimate.
The positions of stars as indicated in Ptolemy’s catalog are nearer to their
real positions in the time of Hipparchus, with the purported 38’ yearly cor-
rection, than to their real positions in the time of Ptolemy. So, it looks very
likely that the catalog is not a result of Ptolemy’s own observations, but the
catalog of Hipparchus, corrected for precession, with a few alterations from
observations of Ptolemy or other astronomers (see Ref. 2, pp. 68-69).

Thus, in this case the date of compilation of the catalog acquires a para-
mount importance. For several centuries astronomers and historians of as-
tronomy analyzed the catalog (and the Almagest in the whole) trying to “sort”
the data contained therein to separate the observations of Hipparchus from
the ones of Ptolemy. A lot of literature is devoted to this dating problem. We
do not dwell on a review of this literature here; an interested reader will find
a guide thereto in Ref. 1.

In this book we consider the question: Is it possible to create a method for
dating star catalogs “intrinsically”, that is, using only the numeric information
contained in the coordinates of stars indicated in the catalog? Our answer is
YES. We have worked out such a method, tested it on several reliably dated
catalogs and applied it, in particular, to the Almagest. The reader will learn
our results from this book.
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Chapter 1

Some Concepts

of Astronomy

and History of Astronomy

1. Ecliptic, equator and precession

Let us consider the orbital motion of the earth around the sun. It is con-
ventional to treat this motion as the motion of the so-called barycenter, the
mass center of the system earth-moon. The barycenter is about six thousand
kilometers from the center of the earth (hence under the earth’s surface).
This distance is unessential for our further treatment, so we will make no
distinction between the motion of the earth and the motion of the barycen-
ter. Gravitational pull from other planets brings about steady rotation of the
orbital plane of the barycenter. The principal sinusoidal component of the ro-
tation has a very large period, and in small intervals of time may be treated as
linear. The real motion is the sum of this component with minor oscillations,
which we will neglect. The rotating plane that contains the orbit is called the
ecliptic plane. The circumference where the ecliptic plane meets the sphere
of fixed stars is called the ecliptic. We assume that the center of the sphere of
fixed stars O lies in the ecliptic plane (Figure 1.1). Since the ecliptic moves,
it is called the moving ecliptic. The position of the ecliptic at a given moment
of time is called the instantaneous ecliptic. For example, we can speak of the
instantaneous ecliptic of January 1, 1900. It should be clear that we can use
any fixed instantaneous ecliptic as a frame of reference for other ecliptics.

Celestial mechanics usually treats the earth as a rigid body. A rotation of
a rigid body is usually described in terms of its moment ellipsoid, determined
by its axes, called the axes of inertia. A particular rotation of a rigid body is

7
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Figure 1.1. The sphere of fixed stars, with the ecliptic and the equatorial coordinate
systems.

characterized by the vector of angular velocity », sometimes called the instan-
taneous rotation axis of the body (in our case, of the earth). Since the axes of
inertia A4, B, C (A > B > C) are orthogonal, we can use them as the axes of
a rectangular coordinate system. Now we can consider the projections x, y, z
of the vector w on the axes A4, B and C as the coordinates of w. The rotation
of a rigid body can now be described by the Euler-Poisson equations:

Ak + (C — Byyz= M,
1) By +(A— C)xz= Mg
Cs+ (B~ Axy = Mc

where M4, Mp, Mc are the projections on the axes of a vector M, called
the moment of outer forces about the barycenter. The moment M is mainly
due to the gravitational pull of the sun and the moon on the ellipsoid that
is the earth. Usually, the earth is assumed to be an ellipsoid of revolution
(that is, the greater semiaxes 4 and B are assumed equal). The position of M
with reference to the axes 4, B and C varies with time very fast and in a very
complicated way; however, modern theories of lunar and solar motion enable
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us to compute it to a high accuracy for any moment of time. Consequently,
we can solve the Euler-Poisson equations, thus determining the evolution of
w. Usually, the Tables of the Motion of the Earth on its Axis and around the Sun
by the well-known astronomer S. Newcomb!? are used to take into account all
irregularities of the motion. A study of the Euler-Poisson equations from the
point of view of the existence of exact solution constitutes an important field
of modern theoretical mechanics, physics and geometry; see a short review
hereof, for example, in Ref. 20.

The vector of instantaneous angular velocity of the earth » determines the
(instantaneous) axis of rotation. The points where the axis of rotation pierces
the surface of the earth are called the instantaneous poles of the earth, and the
points where the axis meets the celestial sphere (the sphere of fixed stars) are
called the (North and South) poles of the world (Figure 1.1). The intersection
of the plane through the center of the earth perpendicular to the axis of
rotation with the surface of the earth is called the (instantaneous) equator,
and its intersection with the celestial sphere is called the (true) equator of the
celestial sphere.

Let us now consider a coordinate system that does not rotate together with
the earth, for example, the one associated with the ecliptic. Conventionally,
the following axes are used as coordinates in this system: the normal to the
ecliptic plane, the axis where the ecliptic plane intersects the equatorial plane
(the equinoctial axis) and the axis of inertia C. The projections of w on the
three axes are denoted by v/, 6 and ¢. Thus, we have expanded the velocity of
rotation of the earth into three components. What is their geometrical sense?
v is called the velocity of precession of the earth. It characterizes the motion of
the axis of precession C (the third axis of inertia) along a circular cone about
the normal OP (see Figure 1.2); thus, the vector « = ON moves along the
same cone. Note that the axes w and OC are very close to each other, so in
calculations that do not require high accuracy we may assume that the vector
w is parallel to OC. Because of the precession, the equinoctial axis rotates in
the ecliptic plane.

The component 6 characterizes variation of the angle 6 the axis OC makes
with the ecliptic plane. As for ¢, it determines the velocity of the earth’s
rotation about the axis OC; in theoretical mechanics this magnitude is called
the velocity of proper rotation. This velocity is much greater than v and 6.
From the point of view of theoretical mechanics, this reflects the principle
according to which a rotation of a rigid body is stable when its axis is close to
the axis of the greatest moment of inertia, that is, to the shortest axis of the
ellipsoid of inertia.

Thus, @ = ¥ +6 + ¢ where + stands for summation of vectors. Each of v,
6 and ¢ is the sum of a constant (or almost constant) component and many
minor periodic summands, called nutations. Neglecting nutations, we come
to the following picture of rotation of the earth.
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Figure 1.2. Trajectory of motion of the earth’s precession.

1) The (almost) constant component of v is called the longitudinal preces-
sion; it moves the axis OC uniformly along a circular cone (see Figure 1.2)
at the rate of approximately 50" per year; the equinoctial axis rotates in the
ecliptic plane clockwise if looked at from the North pole of the ecliptic. The
vector of precession is directed toward the South pole of the ecliptic.

2) The constant component of 6 is now approximately equal to 0.5” per
year.

3) The constant component of ¢ is the mean proper rotation of the earth
about the axis OC, anticlockwise if looked at from the North pole of the
earth; the period of rotation is 24 hours.

Note that the axis O P (the normal to the ecliptic plane), the vector o (the
instantaneous angular velocity of the earth) and the axis OC lie in the same
plane. The precession turns this plane about the axis O P.

Nutational addends in ¥, § and ¢ distort the above picture of rotation.
Therefore the vector @ moves not along an ideal circular cone, but along a
“wavy” surface near the cone (Figure 1.2). In Figure 1.2, the trajectory of the
endpoint of w is depicted by a wavy line. Two circumferences in the celestial
sphere, the ecliptic and the equator, meet at the angle ¢ ~ 23°27' at points
Q and R (Figure 1.1). These are the points where the sun passes the equator
in its yearly motion along the ecliptic. The point Q, where the sun enters the
Northern hemisphere, is called the spring equinoctial point (when the sun is at
this point, day and night have equal length all over the surface of the earth).
The point R is the fall equinoctial point (Figure 1.1). As the moving ecliptic
turns, the spring equinoctial point moves steadily along the equator (shifting
simultaneously along the ecliptic). The rate of this motion of the equinoctial
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point along the ecliptic is exactly the longitudinal precession. The shift of the
equinoctial points thus produces a shift of dates of equinoxes (Figure 1.1).

2. Equatorial and ecliptic coordinates

Recording observations of heavenly bodies requires a convenient coordi-
nate system. Several coordinate systems are used to that end. The equatorial
coordinate system is defined as follows. Figure 1.1 shows the North pole N and
the celestial equator, containing the arc Q B. We may assume with sufficiently
high accuracy that the plane of the celestial equator contains also the earth’s
equator; furthermore, we assume that the center of the earth coincides with
the center O of the celestial sphere; Q is the spring equinoctial point. Let A
be a fixed star and N B the meridian through the North pole and 4; here B is
the point where the meridian meets the equatorial plane. The arc OB = « is
the equatorial longitude of the star A, also called the direct ascent of the star.
The ascent is counted in the direction opposite to the one of the motion of the
spring equinoctial point Q. Consequently, due to precession, the direct ascents
of stars slowly increase with time. The arc § of the meridian 4B in Figure 1.1
is called the equatorial latitude, or the declination of the star A. If we neglect
oscillations of the ecliptic, the declinations of stars in the Northern hemisphere
slowly decrease with time (because of the shift of the spring equinoctial point),
and the declinations of stars of the Southern hemisphere slowly increase. The di-
urnal rotation of the earth does not affect declinations, and the direct ascents
vary uniformly at the velocity of the earth’s rotation.

Another frequently used system (especially in ancient catalogs) is the eclip-
tic coordinate system. Consider the celestial meridian through the pole of the
ecliptic P and the star A4 (Figure 1.1). The meridian meets the ecliptic plane
at a point D. The arc QD in Figure 1.1 is the ecliptic longitude I, and the
arc AD is the ecliptic latitude b of A. Because of precession, the arc QD in-
creases with time (at the rate of about 1° per century), so the ecliptic longitudes
uniformly increase with time. 1f we neglect oscillations of the ecliptic, we can
assume to a first approximation that the ecliptic latitudes b do not vary with
time. This circumstance made the ecliptic coordinates popular among me-
dieval astronomers. The advantage of the ecliptic coordinates over equatorial
is for uniform (and easily computable) variation of / and the constancy of b.
As for the variations of equatorial coordinates generated by precession, they
are described by more complicated formulas (taking into account the turn
through the angle between the equator and the ecliptic). This is the reason
why medieval astronomers chose to compile their catalogs in ecliptic coor-
dinates, despite the fact that equatorial coordinates are easier to measure
from observations. The disappointing discovery of oscillations of the ecliptic
brought about the use of equatorial coordinates in modern catalogs.
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3. Methods of measuring equatorial and ecliptic coordinates

Here we dwell for a while on a brief description of concrete measurements
of equatorial and ecliptic coordinates. We will describe a simple geometrical
idea that underlies such measuring instruments as quadrant, sextant, meridian
circle, etc.

Suppose the vantage point H is at the latitude ¢ on the surface of the earth
(Figures 1.3 and 1.4). It is not difficult to determine the straight line HN’ to-
wards the North pole of the world (the line parallel to ON). Find the meridian
through H and erect a vertical wall along the meridian (Figures 1.3, 1.4). If we
draw on the wall the ray HN’, we can also find the equatorial line H K’ parallel
to OK, lying at a right angle off HN'. Sectoring the right angle into degrees of
arc, we get an astronomic goniometer. The idea of this instrument underlies
modern meridian instruments. The instrument can be used to measure decli-
nations of stars, i.e., their equatorial latitudes, and to fix the moments when
the stars pass the meridian. Since we can determine the equatorial plane (at
a given latitude of the vantage point) with a sufficiently high accuracy from
a series of consequent independent observations, this instrument enables us
to measure declinations with a fairly high accuracy. Meanwhile, as can be
seen from the above description of elementary concepts of celestial mechan-
ics, measuring longitudes requires fixing moments of stars’ passing the meridian,
for which we need either a sufficiently precise clock, or an additional instrument
for fast measurement of longitudinal distance between the star and the meridian.
In any case, measurement of longitudes is a much more complicated oper-
ation, so it looks likely that medieval astronomers measured direct ascents
with much lower accuracy than declinations.

To determine ecliptic coordinates, the observer H must first determine
the position of the ecliptic in the sky. This nontrivial procedure requires
a fair knowledge of the geometry of basic elements of motion of the earth
and the sun. Some ancient methods for determination of inclination of the
ecliptic to the equator and for finding the position of the equinoctial axis are
described in Ref. 1. It is important to note that an immediate measurement
of ecliptic coordinates of stars is impossible unless we have a clockwork able
to compensate for the rotation of the earth and to keep fixed the direction
towards the equinoctial point. The obvious difficulty of this problem made the
astronomers as they calculated ecliptic coordinates either use the formulas
for the turns of the celestial sphere, or celestial globes carrying frames both
of equatorial and ecliptic coordinates, thus making it possible to recalculate
immediately. Of course, this procedure inevitably added errors originating in
determination of the position of the ecliptic in relation to the equator and to
the equinoctial axis.

The above brief discussion of methods of measuring ecliptic coordinates
leads to the conclusion that the following algorithm was used:
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Figure 1.3. The procedure of measurement of equatorial latitude of a star with the help of
a meridian circle (1).
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Figure 1.4. The procedure of measurement of equatorial latitude of a star with the help of
a meridian circle (2).

1) Find equatorial coordinates (latitudes were determined with a higher ac-
curacy than longitudes).

2) Calculate the position of the ecliptic and the equinoctial axis in relation to
the equator.
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3) Recalculate equatorial coordinates into ecliptic with the help of trigono-
metric formulas, or an instrument, or a double-framed celestial globe.

Furthermore, since all observational instruments were earthbound, the
above algorithm is the only realistic way of finding ecliptic coordinates the
medieval astronomers could use. The fact that the observational instrument
is attached to the surface of the earth and hence shares the earth’s rotation
means that the instrument is bound to the equatorial coordinate system.

Below, we will get a confirmation for the assumption that the above algo-
rithm (or a similar procedure) was used for the star catalog of the Almagest
from our statistical analysis.

4. Modern starry sky

1. If we want to date an ancient or medieval star catalog from the coor-
dinates of stars it contains, we must be able to compute positions of stars at
various moments of time in the past. The starting point is the now existing
starry sky. We will only be interested in coordinates of stars, their proper ve-
locities and their star magnitudes, that characterize visible brightness (the less
the star magnitude, the brighter is the star). Star magnitudes are indicated in
the most ancient catalogs. In particular, the Almagest indicates magnitudes
for all stars it contains. The scale it uses matches in general with the one now
in use, but modern catalogs indicate fractional values of the magnitudes. For
example, Arcturus, which has magnitude 1 in the Almagest, has magnitude
0.24 in modern catalogs®!; Sirius, also having magnitude 1 in the Almagest,
has magnitude —1.6 (negative) in modern catalogs. Thus, Sirius is brighter
than Arcturus, while Ptolemy considered them as equally bright. In the Mid-
dle Ages, the brightness (star magnitude) was judged by eye. The color of the
star, the brightness of nearby stars and other factors influenced the result. So,
star magnitudes were determined rather roughly. Nowadays star magnitudes
are measured with the help of photometry. A comparison of the Almagest’s
star magnitudes with modern precise values shows?? that the difference usu-
ally does not exceed two units. We used the catalog?!, comprising about nine
thousand stars up to the eighth star magnitude. Recall that only sixth to sev-
enth magnitude stars are visible to the unaided eye, and the catalog of the
Almagest, as Ptolemy claims, contains all stars of the visible part of the sky up
to the sixth magnitude. In fact, though, there are many more stars of sixth
and lesser magnitudes in the visible sky than in Ptolemy’s catalog. This
is one of the causes of ambiguities that arise in attempts to identify the stars
in the Almagest with the stars in modern catalogs (computed back to the
past).

The astronomer of the 17th century 1. Bayer suggested to denote stars
in a constellation by Greek letters: the brightest star is denoted by «, the
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second in brightness by g8, and so on. For example, o Leo is the brightest
star in the constellation Leo. Later on, J. Flamsteed (1646-1720) assigned
to stars the numbers (in the constellation): the westernmost star acquired
number 1, the next to the east number 2, and so on. The Flamsteed number
and the Bayer letter are usually written together in the denotation of a star, for
example, 32 o Leo. Furthermore, a star can have a proper name. There are
comparatively few “named” stars; the names were only given to the stars which
had special significance in antique and medieval astronomy. For example,
32 a Leo has the proper name Regul (Regulus).
We used the following characteristics of stars from Ref. 21:

1) Direct ascent of the star in 1900, denoted by «j990 and measured in
hours, minutes and seconds.

2) Declination of the star in 1900, denoted by 81900 and measured in degrees,
minutes and seconds of arc.

3) Velocities of the proper motion of the star in declination and in ascent,
that is, the projections of the velocity of proper motion on the equatorial
coordinate axes in 1900.

The velocities of proper motions of stars are rather small; as a rule, they
do not exceed 1” per year, and the fastest stars visible by unaided eye (0? Eri,
p Cas) move at the rate of about 4” per year. In the interval of time we are
interested in, about two to three thousand years long, the proper motion may
be assumed uniform in each coordinate in a fixed coordinate system. For us,
this coordinate system is the equatorial coordinate system of 1900. For the
reader’s convenience, we adduce in the Appendix two lists of characteristics
of stars taken from Ref. 21. Table Ap. 1 is the list of fast stars. It contains all
stars whose proper motion in at least one of the coordinates 1900 , 81900 is not
less than 0.5” per year. Table Ap. 2 is the list of named stars. The two tables
have a common part: some named stars have a notable proper motion; such
stars are especially useful for dating purposes (see below).

5. Computation of the starry sky to the past. Catalogs K(t).
Newcomb’s theory

1. Having at our disposal the coordinates and the velocities of proper
motion of stars in our time, we can calculate a precise catalog for an arbitrary
epoch. We had to do this many times and for various epochs as we investi-
gated the Almagest and other ancient catalogs. Compiling these “theoretical”
catalogs, we first computed the positions of stars at the year ¢ in coordinates
a1900 and 81990, and then recalculated into ecliptic coordinates /; and b, for
the year ¢. Below, we give the necessary formulas making it possible to take
into account the precession and, in particular, to recalculate from «;, §; into
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Figure 1.5. Relations between ecliptic and equatorial coordinates in various epochs.

l,, b, for any two epochs s and u. These formulas, as well as Figure 1.5 are
taken from Ref. 23. They were obtained on the basis of a theory of New-
comb, modified by Kinoshita. The procedure of recalculating coordinates is
described in Subsection 2 below. In the formulas, we assume that the epochs

u and s are counted in Julian centuries from 2000 AD, and that 8 = u —s (see
Figure 1.5).

@(s, u) = 174°52'27"66 + 3289"80023u + 07576264u>

(1)
— (870763478 + 07554988u)6 + 070245786>
o x(s, u) = (4770036 — 0”06639u + 07000569u>)60
2
+ (—0703320 + 070005691)62 + 0700005003
£(s, u) = 23°26'21747 — 46"8155%
— 0700041242 + 0700183u>
(3)
+ (—46"8156 — 0”700082u + 07005489u2)6
+ (=0700041 + 07005490u)62 + 0700183006°
go(s, u) = 23°26'21"47 — 46"81559u
4)

— 0700041242 + 07001831
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e1(s, u) = 23°26'21747 — 46" 81559
(5) — 07000412u? + 0700183u°
+ (0705130 — 07009203u)6% — 070077346°

¥ (s, u) = (503877802 + 0749254u — 0700039u)6

(6)
+ (=1705331 — 07001513u)6% — 070015300
x (s, u) = (1075567 — 1788692u — 0"0001441)0
(7
+ (—2738191 — 070015541)6% — 0”70016616>
@ W (s, u) = (502970946 + 2722280u + 0”000264u2)6
8

+ (1”13157 + 07000212u)6% + 0700010263

We should note that the distinctions between the original Newcomb theory
and its modification by Kinoshita?}, which we use here, are unimportant for
us: for any moment of time ¢ in the interval we are interested in (600 BC-
1900 AD), the difference between the ecliptic coordinates computed from the
Newcomb theory and the ones from the modification is negligible in compari-
son with the errors of the Almagest. We used Ref. 23 because the formulas for
precession are given there in a form convenient for computer calculations.

2. Let us now describe in details the algorithm of compilation of the cat-
alog K (¢) reflecting, according to Newcomb’s theory, the sky at the moment ¢.
Henceforth we consider ¢ to be an arbitrary moment in the interval 600 AD—-
1900 BC, counted back in Julian centuries from 1900; thus, for example, t = 1
corresponds to 1800 AD, ¢t = 10t0 900 AD, and ¢ = 18 to 100 AD (the several
days’ difference that accumulates because of the difference between Julian
and Gregorian calendars is absolutely immaterial for our purposes). The
reason for this somewhat strange denotation is its matching the existing com-
puter programs and our wish to avoid confusion that could initiate a change
of notation. We will compare the catalogs K (¢) for various values of ¢ with the
ancient catalog we study (say, with the Almagest); t will serve as an a priori
date for the catalog. Therefore K () are to be compiled in ecliptic coordinates
of the epoch ¢, because as we have already noted, ancient and medieval star
catalogs used these coordinates.

So, suppose a star has equatorial coordinates a® = a%,, and §° = 8)g, in
a modern star catalog (say, in Ref. 21). These coordinates show the position
of the star in 1900 in the spherical coordinate system the equator of which
coincides with the earth’s equator (hence lies in the plane of earth’s rotation,
which, as we have noted above, changes with time) in 1900. We need to deter-
mine the coordinates /; and b, (that is, coordinates in the spherical coordinate
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Figure 1.6. The recalculation of ecliptic coordinates of January 1, 1990 into ecliptic coor-
dinates of an arbitrary epoch, taking into account the proper motion of stars.

system whose equator is the ecliptic in the year ¢). To that end it suffices to
do the following (see Figure 1.6):

1) Find the coordinates of the star «°(t) and 8°(t) for the year t in the equatorial
coordinates of 1900. This can be done with the help of the proper motion
velocities v, and vs in the coordinates « and § (see the fifth and the sixth
columns of Tables Ap. 1 and Ap. 2). We have:

) Q%(t) = 0o (t) = @® — vat
(10) 8%(t) = 83950 (1) = 8° — vyt

Indeed, as we have noted above, within the interval of time we are interested
in, the proper motion of stars may be treated as uniform. The minuses in (9)
and (10) come from our counting time to the past, while the signs of v, and
vs correspond to the natural time count.

2) Pass from coordinates w900, 81900 to the coordinates liog, bigoo. This
gives us coordinates /°(¢) and b%(¢) of the star in the year ¢ in the spherical
coordinate system bound to the ecliptic of 1900.



5. COMPUTATION TO THE PAST 19

We have:
(1) sinb’(t) = —sina’(#) cos 8°(¢) sin £” + sin 8°(¢) cos £°
B cos a0(¢) cos 8%(¢)
where
(13) £ = 23°27'8"26

These formulas enable us to restore uniquely the values of b%(¢) and 1°(¢),
because —90° < a < 90° and |I°(t) — «%(t)] < 90°. The angle £° is the
inclination of the ecliptic to the equator in 1900 (see (4), where we putu = —1
to pass from year 2000 to 1900).

3) Pass from coordinates l1900 and byogg to the coordinates I' and b1, which are
also bound to the ecliptic of 1900, but whose zero point is at the intersection
of the ecliptic of 1900 I1(1900) and the ecliptic of the year ¢ I1(¢). The two
coordinate systems are connected by the relations

')y =1 —¢
(14) b'(t) = bO(¢)
¢ = 173°57'38"436 + 87070798t + 07024578¢%

Here ¢ is the arc of I1(1900) between the spring equinoctial point of 1900
and the point of intersection of I1(1900) and I1(¢); it can be found from (1)
by putting u = —1 (then IT(«) in Figure 1.5 will correspond to 1(1900)) and
6 = —t. Then I1(s) in Figure 1.5 will depict the ecliptic of the epoch ¢. Indeed,
t is counted in centuries from 1900 to the past, and 6 = s — u is counted in
centuries from u to the future; since we put u = —1, which corresponds to
1900 (2000 — 100 = 1900), we have to put & = —t to make the epoch s = u+96
in (1) correspond to the epoch ¢.

4) Pass from the coordinates I' and b to the coordinates 1> and b?, the
spherical coordinates bound with the ecliptic I1(¢) and differing from the
ecliptic coordinates /; and b, only for the choice of zero point of the longitudes.
In the coordinates /2 and b?, the zero point is the intersection of I1(1900) and
I1(¢). The transfer formulas from (/', b') to (;, b;) are similar to (14); we only
have to replace £° by the angle £, between I1(1900) and I1(¢); we have

(15) e = —4770706t — 07033769t> — 07000050z

This expression can be obtained from (2) by puttingu = —1 and 8 = —¢.
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5) Finally, we are to pass from I? and b? to the ecliptic coordinates I, and b.
This can be done by the formulas

lt=12+¢+qj

(16)

bt = b2
where ¢ is as in (10) and ¥ can be obtained from (8) by putting u = —1 and
6 = —t, that is,

17 ¥ = —50267872t + 171314+ + 070001¢3

The sequence of steps 1)-5) is illustrated in Figure 1.6.

6. Astrometry. Some medieval astronomic instruments

In Section 3 we have exposed a general idea of an astronomic goniometer;
an important feature of it is the possibility of a sufficiently accurate deter-
mination of the line of the celestial equator. The ray HK’ along which the
observer’s eye is directed does not leave the equator in the process of diurnal
rotation. Of course, the setting of the ray HK' depends on the geographical
latitude of the vantage point. In principle, one can imagine the plane HLM as
attached to the quadrant (Figure 1.7). This plane is parallel to the equatorial
plane, and intersects the celestial sphere along the celestial equator. This is
in no way affected by the fact that HLM actually does not pass through the
center of the earth. Thus, at any point of the earth’s surface it is possible to
build a stationary instrument (oriented along the meridian) that allows a prac-
tically visual observation of the equator. This makes a reliable measurement of
equatorial latitudes of stars possible (Figure 1.7), for example, at the moment
when the star passes the vertical plane of the quadrant. As we already noted,
for a professional medieval astronomer measuring equatorial latitudes was
not a complicated procedure; it only required accuracy and a sufficient time
for observations. In particular, we can expect that a thorough observer should
not make a big systematic error in declinations of stars.

Let us now look at particular implementations of this idea in medieval
astronomic instruments.

The first instrument, the so-called meridian circle is described by Ptolemy
(Figure 1.8). The device is a flat metallic ring installed vertically on a firm
support in the plane of the meridian. The ring is graduated, for example,
into 360 degrees. A smaller ring, rotating freely inside the first ring in the
same plane was installed (Figure 1.8). Two small metallic plates with arrows
pointing to the divisions on the outer ring were attached at two diametrically
opposite points of the inner ring (points P in Figure 1.8). The device is
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Figure 1.7. Visual determination of the equator’s position in the celestial sphere.

Figure 1.8. Meridian circle.

installed in the meridian plane with the help of a plumb; the direction of the
meridian was determined from the shade of a vertical pole at noon. Then the
zero division of the outer ring was matched with the zenith. The device could
be used for measurement of the altitude of the sun (at the latitude of the
vantage point); to that end, the inner ring is turned at noon so that the shade
of one of the plates P covered the other. Then the arrow on the upper plate
points to the altitude of the sun in degrees on the outer ring. Note that we
can read the result after fixing the plates; so we can read the altitude after the
moment of noon. Furthermore, the meridian circle can be used to determine
the angle ¢ between the ecliptic and the equator.
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Another instrument is the astrolabon (ao tpoiapov) described by Ptolemy;
today this word is translated as astrolabe. It should be noted, however, that
the meaning of this word altered with time. It is considered that the device
we will now describe was used by Ptolemy near the beginning of our era and
was called astrolabon. But in the Middle Ages, this instrument was already
called armillary sphere, or armilla. Today, some astronomers think (see, for
example, Ref. 18) that Ptolemy does not actually describe in the Almagest
the astrolabe (also a medieval term), but does describe the astrolabon (or the
armillary sphere). R. Newton notes that “Probably, by the second half of
the medieval period, it (the term astrolabe — Authors) had come to mean an
instrument for measuring the elevation angle of a celestial object above the
horizon. By the time this happened, the kind of instrument just described
(following to Ptolemy — Authors) was often called an armillary sphere, of
which modern telescope mounts are a development” (Ref. 1, p. 145). To avoid
terminological confusion, we describe below two devices, the armillary sphere
(Ptolemy’s astrolabon) and the astrolabe (the medieval instrument, the name
of which is for some reason practically identical with Ptolemy’s astrolabon).
So, what is the construction of the astrolabon (= armilla)? The basic details
are shown in Figure 1.9, and Figure 1.10 exhibits a real medieval armillary
sphere. The main detail of the armillary sphere is two metallic perpendicular
rings, rigidly fastened together; we will call them the first ring and the second
ring (Figure 1.9). The first ring rotates freely about the axis NS, parallel to
the earth’s axis. The common center of the two rings is the point O.

We will now describe how to use the armilla to measure the angle between
the ecliptic and the equator. It is best to carry out the measurements on
solstice. The corresponding point of the earth’s orbit is denoted by O’ in
Figure 1.11 (it makes no difference at the moment whether it is the summer
or the winter solstitial point). Consider the plane through the radius vector
SO’ where S is the sun, and the earth’s axis NO'. Since O’ is the solstitial
point, the plane is perpendicular to the ecliptic plane and hence intersects
the earth’s surface along a meridian (Figure 1.11). Suppose the armilla is
at a point of this meridian (we may place the armilla at any point of the
earth’s surface, but carry out the measurement at noon; at this moment the
device is on the meridian where the plane meets the surface). We assume
that the observer knows the direction of the earth’s axis, and that the axis
NO is oriented in this direction (parallel to NO’ in Figure 1.11). Turn the
first ring of the armilla around the axis NS to place the ring in the plane of
the meridian. The ring will be there at the moment when the shade of the
outer edge of the ring will cover its inner part. Fixing the plane of the first
ring, place the second ring (perpendicular to the first) so that its inner part
is in the shade of its outer part. It is clear from Figure 1.11 that then the
second ring will lie in the ecliptic plane (more accurately, will be parallel to
the ecliptic plane). Furthermore, let P, P, be perpendicular to the second
ring. Since both rings are fixed, the line is also fixed, so it determines a pair
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Figure 1.9. Astrolabon (armilla).

Figure 1.10. Medieval armillary sphere.

of points P,, P,, on the first ring. Thus the angle P,ON in Figure 1.11 is
well-defined. Clearly, this angle is equal to the angle between the ecliptic and
the equator. We have described the method the ancient astronomers used.
Although the geometrical idea is quite simple, various difficulties introducing
errors into the measurement are obvious. In particular, the observer must
know (with a sufficient accuracy): a) the direction of the axis ON parallel to
the earth’s axis, b) the day of solstice, c) the moment of the noon (at the given
point of the earth’s surface). As R. Newton notes, “The main drawback to
this instrument, so far as [ can see, is that the rotation of the earth destroys the
alignment rather rapidly, so that the instrument must be read quickly” (Ref. 1,
p. 145). Indeed, as can be seen from Figure 1.11, the earth’s rotation turns
the device about the axis NO’, making the above considerations incorrect.
R. Newton tells that he experimented with a simplified version of the device,
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Figure 1.11. The use of armilla for determination of inclination of the ecliptic on solstice.

and came to the conclusion that placing the second ring into the ecliptic is
possible to an accuracy within 2 minutes of arc. If the nearest solstice occurs
in no more than a month from the day of observation (for example, if the
astronomer made a mistake in determining solstice), then the error in the
longitude of the sun must not exceed, in Newton’s estimate, 5’ (provided that
the astronomer can read accurately enough the indication of the latitude ring).
Further, R. Newton notes that the overall error probably must not exceed 15'.
However, as we have seen, the procedure of measuring the angle of inclination
of the ecliptic is fairly delicate, so a 15'-20’ error should be treated as natural
in using an armilla, assuming that the professional observer was maximally
thorough in his observations.

Returning to Figure 1.11, we should note that formally, the points O (the
center of the armilla) and O’ (the center of the Earth) are different (the
distance being equal to the earth’s radius), but from the point of view of the
above measuring procedure, this distinction is negligible, because the distance
is small in comparison with the distance to the sun. Therefore, we can assume
O = O’ asin Figure 1.11.

Let us now return to measuring ecliptic coordinates with the help of an
armilla. Installing the armilla in accordance with the above rules, we get
the ecliptic coordinate system. Namely, the plane of the second ring E; E;
is parallel to the ecliptic plane, and the points E; and E, correspond to the
solstitial points. Using the divisions on the rings, we can find the points R,
and R, that correspond to the equinoctial points. Thus we get a scale on
the second ring R; E1 R; E, with a fixed origin, say at the spring equinoctial
point. Consequently, we get an opportunity to measure ecliptic latitudes and
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Figure 1.12. Quadrant.

Figure 1.13. Astrolabe.

longitudes of stars. We should recall, however, that the diurnal rotation of
the earth upsets alignment of the armilla, so either the measurements are
to be carried out as fast as possible, or we have to use a clockwork able to
compensate for the rotation and automatically reset the instrument (the latter
idea is used in modern observational instruments). To facilitate measuring
ecliptic coordinates, one more ring (the third) is added to the armilla, which
can rotate about an axis sliding along the ring R; E; R; E;. We will not go into
these details, because they are of no importance for us here.

Another instrument is the quadrant (Figure 1.12), which can be obtained by
installing a spike at the center of a meridian circle (see above), perpendicular
to the plane of the circle. The shade of the spike falls on the lower northern
part of the ring (see Figure 1.8). The shade can move within a quarter of the
ring, SO it is enough to calibrate only this part of the ring. Thus, the quadrant
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is a plate with a graduated quarter of the ring, installed in the meridian plane.
At noon, the shade of the spike shows the altitude of the sun on the scale.

The fourth instrument is the astrolabe (Figure 1.13). The medieval astro-
labe is a circle of diameter about half a meter with a fixed calibrated ring at
its edge. A plank with sights (diopters) is installed on the axis perpendicular
to the plane of the circle. The device could be suspended; in the suspended
position the disk was directed towards a heavenly body, after which the mov-
ing plank was directed towards the body. Thus the altitude of the body above
the horizon was determined. For example, this technique could be used for
determination of the latitude of the vantage point (from the altitude of the
sun at noon). Of course, the measuring could be inexact, because the mea-
suring technique itself is rather rough. It is accepted that this technique could
provide the latitude of the vantage point to an accuracy within several minutes
of arc.



Chapter 2

Star Catalog

of the Almagest.
Preliminary Analysis

1. Structure of the catalog

The star catalog is contained in the seventh and the eighth books of the
Almagest. In our study we used the canonical edition 1 of the catalog by Peters
and Knobel # and two complete editions of the Almagest'”24,

We begin with recalling some notation commonly used in history of astron-
omy.

The catalog is compiled in ecliptic coordinates. The circumference of
ecliptic longitudes (from 0° to 360°) is traditionally divided into twelve equal
parts, called the signs of the zodiac (not to be confused with the zodiacal
constellations!). Table 2.1 contains a list of the signs with their traditional
denotations and the corresponding longitudinal sectors.

The zodiacal signs are used in compiling catalogs. For example, in the
Almagest the ecliptic longitude of a star is counted from the beginning of the
zodiacal sign the star belongs to. For example, o Ursae Majoris (number 1
in the catalog of the Almagest) has longitude I 0°10’, which means that it is
offset by 10 minutes of arc from the beginning of the zodiacal sign Gemini,
disposed at 60° (see Table 2.1). Thus, the absolute ecliptic longitude of the
star is 60°10'.

For denoting latitudes, a simpler principle is used in the Almagest: the
longitudes are counted from the ecliptic (corresponding to zero grade of lat-
itude) to the pole (90 grades of latitude). For example, @ Ursae Majoris has

27
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Table 2.1. Zodiacal signs

Denotation Sign Latitudinal interval
Y Anes 0-30
o} Taurus 30-60
I Gemini 60-90
69 Cancer 90-120
g2 Leo 120-150
mp Virgo 150-180
= Libra 180-210
m. Scorpius 210-240
e Sagittarius 240-270
B Capricornus 270-300
o Aquarius 300-330
P2t Pisces 330-360

latitude 4+-66°10’ (in the Almagest). The sign “+” or “—” means that the star
belongs, respectively, to the Northern or the Southern hemisphere.

Since the signs of zodiac do not match exactly the zodiacal constellations,
stars of the same zodiacal constellation may belong to different signs of the
zodiac.

The canonical version of the Almagest can be found 1n the work of Peters
and Knobel %,

2. Distribution of well-identified and poorly identified stars of
the Aimagest

Table 6 in Ref. 22 enlists stars of the Almagest which are identified with
different now known stars by different astronomers. It compares opinions of
well-known astronomers: Peters, Baily, Schjellerup, Pierce and Manitius.

We have carried out numeric processing of these data from the following
point of view. First, it is useful to display the constellations mentioned in
the catalog on the star map. To this end we used a map of the modern sky,
exhibiting boundaries of modern constellations. In Figure 2.1, the bound-
aries are depicted by continuous lines. Of course, this is nothing more but an
approximate picture, because the boundaries of ancient constellations were
not clearly defined. However, taking into account this roughness, we may
assume that Figure 2.1 reflects a qualitative picture of the distribution of con-
stellations of the Almagest in the sky. We also used the map adduced in the
first editions of the Almagest (Latin and Greek editions, the 16th century).
Although boundaries of constellations are not clearly delineated in this map
(drawn by A. Duirer; the map represents conventional figures of the constel-
lations: Hercules, Pegasus, etc.), a comparison with modern positions of the
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Figure 2.1 (a). Partition of the star map of the Aimagest into 48 constellations and the
twelve named stars (1) (Rims are approximate ) The names of the constellations are shown
in Table 2 2

constellations shows that modern boundaries match the figures represented
in the maps of Durer and of the Almagest. Further, the crosshatched circum-
ference in Figure 2.1 depicts the ecliptic, and the broad vertical stripe (tilted
to the left) the Milky Way. Of course, here its boundaries are also shown but
approximately, indicating the distribution of its most dense regions.

Within the domain corresponding to each constellation, the number of the
constellations in the Almagest is shown. Their names are given in Table 2.2.

To clarify some terms used below and to give an impression of the source
of our arguments, let us describe the structure of Table 6 in Ref. 22, which has
already been referred to.

The table consists of six columns. The first column is a list of the numbers
of the stars. This enumeration is due to Baily (manuscripts of the Almagest do
not contain any enumeration). In accordance with this enumeration, the num-
ber of the stars is equal to 1028, although there is some divergence between
different research about this number because some stars have two entries in
the catalog. The list of stars is partitioned into constellations, each having
a proper name. The total number of constellations is 48; their names will
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Figure 2.1.(b). Partiion of the star map of the Aimagest into 48 constellations and the
twelve named stars (2) (Rims are approximate )

be listed below. Some constellations are assigned to a group of stars called
informata. This group contains stars that do not belong to the constellation,
whose coordinates are close to coordinates of the stars from the constella-
tion. In other words, the “main” list contains probably the stars included in
the skeletons of constellations, and the stars included in the informata are a
sort of background for “main” stars.

The second column contains a description of stars. Most stars have no
names and are endowed with descriptions like “the star on the end of tail,”
“the star in the middle of the neck,” etc. These descriptions are taken from
the Latin edition of Almagest published in 1528; see Addendum for details.

The third column contains modern names of the stars. Its contents are
based on research carried out by various scientists. It is worth mentioning
that such identification may have nonunique solutions because of different
reasons: fuzziness of the description of stars, moving positions of stars, ap-
proximate character of constellations, etc. As we have mentioned, the table
in Ref. 22 contains the results of identifications obtained by different as-
tronomers; they do not coincide identically.
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The fourth and fifth columns contain ecliptic longitudes and latitudes of
the stars, respectively, as has been explained in Section 2.1.

The sixth column contains magnitudes (of the brightness) of the stars.

The Almagest contains twelve named stars. Verbal descriptions of these
stars always contain the word vocatur (named). For example, vocatur Arcturus
(the star named Arctur). All the twelve stars are depicted in Figure 2.1 by
bold black points. These stars are: Arcturus, Regulus, Aselli, Sirius, Procyon,
Vindemiatrix, Spica, Lyra (Vega), Capella, Aquila, Canopus, Antares. Most
of them either lie in the Milky Wayj, to the right of the Milky Way, or very close
to the Milky Way. Canopus is in fact outside the map, because this star is very
much to the South. Further, in Figure 2.1 we display the North pole (in Ursa
Minor) and the pole of the ecliptic (in Draco). Let us now look at the order
Ptolemy lists the constellations in. To this end we construct a new map, in
which instead of the constellations we depict their “centers” as white points;
see Figure 2.2. Of course, the center of a constellation can be defined only very
roughly, but we are now only interested in a rough qualitative picture. Now
let us connect the constellations with stars in the order as in the Almagest; see
the result in Figure 2.2. The resulting line is a spiral beginning in the Great
Bear and unwinding clockwise all along the constellations occurring in the

Almagest. Let us look more closely at the spiral.

Several pieces can be naturally distinguished in the spiral. First, Ptolemy
enlists the constellations with numbers 1 to 8: Ursa Minor, Ursa Major, Draco,
Cepheus, Bootes, Corona Borealis, Hercules, Lyra; all disposed in the domain
bounded by the zodiacal belt (from the right) and the Milky Way (from the
left).

Then Ptolemy lists all constellations which are covered completely by the
Milky Way or have a substantial intersection with it: Cygnus, Cassiopeia,
Perseus, Auriga, Ophiuchus, Serpens, Sagitta; these constellations have num-
bers 9 to 15.

Then Ptolemy passes to the domain to the left from the Milky Way (in
Figure 2.2) bounded from the left by the zodiacal belt; he lists consequently
the constellations Aquila, Delphinus, Equuleus, Pegasus, Andromeda, Trian-
gulum, having numbers 16 to 21.

Then Ptolemy enters zodiacals and makes a round trip about the center of
the map, going consequently through all the twelve zodiacal constellations:
Aries, Taurus, Gemini, Cancer, Leo, Virgo, Libra, Scorpio, Sagittarius, Capri-
corn, Aquarius, Pisces. These constellations have numbers 22 to 33.

Then Ptolemy leaves the Northern hemisphere and, crossing the zodiacal
belt, goes down to the other hemisphere. On this way, he enlists the constella-
tions Cetus, Orion, Eridanus, Lepus, Canis Major, Canis Minor, Argo, Hydra,
Crater, Corvus, Centaurus, Lupus, Ara, Corona Australis, Piscis Austrinus,
having numbers 34 to 48, and here the catalog ends.

Thus, the order in which Ptolemy enlists the constellations implies a partition
of the star map into several domains.
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Figure 2.2. Order of constellations in the catalog of the Aimagest

Not trying so far to find the reasons for this particular order, let us now
outline the domains.

The domain M is the Milky Way, dividing the sky into two parts. Further-
more, the domain A is the part of the sky to the right from the Milky Way
to the zodiacal belt, including its night rim. The domain contains a domain
composed of zodiacal constellations alone, which we will denote by Zod A.

Further, domain B is the part of the sky to the right from the Milky Way up
to the zodiacal belt, including its left rim. We denote the part of the domain
B consisting of zodiacal constellations by Zod B. Finally, C is the southern
domain of the sky to the left from the zodiac, and D is the southern domain
to the night from the zodiac (in Figure 2.2).

As we will see below, this partition of the star catalog of the Almagest 1s



2. WELL- AND POORLY IDENTIFIED STARS 33

not accidental, and has some remarkable properties, connected with deep
statistical properties of the catalog.

Now we will only note a special (and nontrivial) nature of the order of con-
stellations in the catalog. For example, the compiler could merely list them
using a spiral, but passing uniformly from domain A4 to domain B and back,
that is, moving uniformly around the pole. But the order used by Ptolemy is
quite different: he first lists the constellations to the right from M, then the con-
stellations in M, then the ones to the left from M, then the zodiacal constellations,
and finally southern stars. Probably, this order was chosen for some serious
reasons. In fact, the reasons are unessential for us, and only the resulting
order of constellations is important.

A very important (and not a priori obvious) fact is that the partition of the star
catalog is closely connected with the “accuracy characteristics” of descriptions of
stars.

As we have already noted, the opinions of specialists concerning identifi-
cation of several stars of the Almagest diverge. Table 6 of Ref. 22 displays the
divergences between five most well-known researchers and commentators of
the Almagest. The divergence is evidence for the star in question being mea-
sured to a too low accuracy to make it possible to find unambiguously its modern
position. Since most stars are not of the first or second magnitude, in order
to identify them, one has to take the coordinates indicated in the Almagest,
then compare them with modern coordinates of stars, and find the star that
matches best, that is, disposed most closely to the Almagest star. Clearly, this
approach (practically, inevitable for non-named, comparatively faint stars)
works well only if Ptolemy’s coordinates for the star are sufficiently precise.
Otherwise, several possibilities for identification may arise. The situation be-
comes especially complicated when the star in question is disposed among
several other stars more or less equal in brightness; in this case many possibil-
ities for identification arise, and the final choice is far from being easy. This
is the cause of the controversy in identification of stars of the Almagest. The
“final version” in Ref. 22 may be more or less matching than other versions,
and we are not going to go into a detailed discussion of this question, more
so because we do not need this for our study. We should hail the accuracy
of Peters and Knobel, who conscientiously listed all versions of identification.
We will use their Table 6 to carry out some not difficult, but, as we will see, very
useful calculations, leading to some conclusions on the accuracy of Ptolemy’s
measurement in various domains of the sky.

Thus, taking into account the above considerations, we may assume that if
a star of the Almagest has received no unambiguous identification, then its coor-
dinates in the catalog are determined with a notable error. Let us call such stars
doubtfully identifiable, or poorly identified. So, the number of poorly identified
stars in a constellation provides an estimate for the number of poorly measured
stars in this constellation. This characteristic is undoubtedly of interest, be-
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cause it shows which constellations were measured well and which were not.
It is clear that the rate of doubtfully identifiable stars is a correct charac-
teristic of the accuracy of measurements. In other words, we should find
(X/T) - 100% where T is the total number of stars and X is the number of
doubtfully identifiable stars in the constellation.

The result accumulates a lot of preliminary work carried out by researchers
of the Almagest. Since there were many researchers, we have grounds to
assume that the average of their results gives a more or less reliable picture,
free of biases of this or that specialist.

We have carried out the calculations and summarized the results in Ta-
ble 2.2. The first column of the table indicates the domain of the sky that
contains the constellation; recall that we have distinguished seven domains,
A Zod A B, Zod B, M, C and D. .

The table contains all 48 constellations mentioned in the Almagest; it also
contains data on informatas, the list stars which were not attributed by Ptolemy
to the constellations but indicated as lying near this or that constellation.

3. Seven domains in the star atlas of the Aimagest and
accuracy of measurements

We draw the following conclusions from Table 2.2.

Conclusion 1. The seven domains as in Section 2 consist of the following con-
stellations:

Domain A constellations 1-8 and 24-29.

Domain B: constellations 16-23 and 30-33.

Domain Zod A (contained in A): constellations 24-29.
Domain Zod B (contained in B): constellations 22, 23, 30-33.
Domain D: constellations 34-38, 47 and 48.

Domain C: constellations 39-46.

Domain M: constellations 9-15.

Conclusion 2. Usually, informatas of the constellations (if any) are very poorly
measured. In fact, only the following informatas are measured well: Ursa Minor
(one star), Bootes (one star), Hercules (one star), Cygnus (two stars), Ophiuchus
(five stars), Aquila (six stars), Aquarius (three stars), and Pisces (four stars), that
is, only 9 of 22 informatas. The rest of the 13 informatas are measured very
poorly. Indeed, we have 38% of poorly measured stars in the informata of Ursa
Major, 50% in the one of Cepheus, 33.3% for Perseus, 36.4% for Taurus, 57%
for Gemini, 75% for Cancer, 37.5% for Leo, 16.6% for Virgo, 44.4% for Libra,
66.7% for Scorpius, and 100% for Canis Major, Hydra and Piscis Austrinus.
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Table 2.2.
Percentage of poorly Number of stars
identified stars n the constellation
Presence of
Constellation Domain aninformata  “pure” informata total “pure” total
1 Ursa Mmor A + 0 0 0 7 1
2 Ursa Major A + 37 114 380 27 8
3 Draco A 0 31 0
4 Cepheus A + 0 77 500 11 2
5 Bootes A + 273 260 0 22 1
6 Corona A 0 8 0
Borealis
7 Hercules A + 103 100 0 29 1
8 Lyra A 100 10 0
9 Cygnus M + 0 0 0 17 2
10 Cassiopela M 230 13 0
11 Perseus M + 38 69 333 26 3
12 Aurnga M 214 14 0
13 Ophiuchus M + 250 207 0 24 5
14 Serpens M 0 18 0
15 Sagitta M 0 5 0
16 Aquila B + 223 133 0 9 6
17 Delphinus B 200 10 0
18 Equuleus B 1000 4 0
19 Pegasus B 100 20 0
20 Andromeda B 130 23 0
21 Tnangulum B 0 4 0
22 Aries Zod B + 0 0 0 13 5
23 Taurus Zod B + 212 250 364 33 11
24 Gemni Zod B + 56 200 570 18 7
25 Cancer Zod A + 0 230 750 9 4
26 Leo Zod A + 111 171 375 27 8
27 Virgo Zod A + 154 156 166 26 6
28 Libra Zod A + 0 235 44 4 8 9
29 Scorpius Zod A + 48 125 66 7 21 3
30 Sagittanius Zod B 129 31 0
31 Capnicornus Zod B 36 28 0
32 Aquanus Zod B + 261 244 0 42 3
33 Pisces Zod B + 58 52 0 34 4
34 Cetus D 227 22 0
35 Ornon D 89 38 0
36 Endanus D 264 34 0
37 Lepus D 0 12 0
38 Cams Major D + 56 413 1000 18 11
39 Canis Minor C 0 2 0
40 Argo Navis C 689 45 0
41 Hydra C + 160 222 1000 25 2
42 Crater C 571 7 0
43 Corvus C 0 7 0
44 Centaurus C 810 37 0
45 Lupus C 1000 19 0
46 Ara C 1000 7 0
47 Corona D 1000 13 0
Australis
48 Pisces D + 83 389 1000 12 6

Austrinus
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Thus, on the whole, the informatas of the Almagest concentrate poorly mea-
sured stars. The hypothesis seems appropriate (though not influencing our
further considerations) that since informatas gather stars outside the main
bodies of the constellations, no particular significance was attached to their
measurement, especially when dealing with comparatively faint stars. Of
course, the coordinates of bright stars, even though in an informata, were
measured much more accurately (for example, the famous Arcturus is con-
tained in the well-measured informata of Aquarius). However, as can be seen
from Table 2.2, the situation when the stars in an informat are measured much
less accurately than the ones in the “main body” of a constellation is typical.

Therefore it seems natural to separate the stars in the informatas from the
stars of the constellations themselves (which, in fact, is done in the Almagest,
where stars of informatas are gathered in a separate group under the title
Informata), and consider the “main stars”, that is, the stars contained in the
main bodies of the constellations.

To make the picture more visual, we display the data of Table 2.2 in Fig-
ure 2.3; we place here two numbers inside every constellation, the first of
which (numerator) is the percentage of poorly measured stars of the main
body of the constellation, and the second (denominator) is the percentage of
poorly measured stars in the constellation together with its informata. For
constellations that have no informata, we omit the second number (leaving
the fraction sign). The dotted line in Figure 2.3 delineates the Milky Way.

A close examination of Figure 2.3 reveals some interesting regularities.

To make the numerical data still more visual, let us look at Figure 2.4, in
which the domains with the rates 0% to 5% are left white, the ones with the
rate 6% to 10% are dotted, with the rates 11% to 20% are marked by oblique
hatches, the domains with the rates 21% to 30% are double-hatched, and the
domains within the rates 31% to 100% are black; so, the darker a domain
in Figure 2.4, the worse it is measured. It is immediately obvious that many
southern constellations in the domain C (to the right from the Milky Way) are
very poorly measured. To the contrary, the constellations in the domain A4are
measured much better. The domain B is measured worse than the domain A
Some domains in Figure 2.4 are marked by the question sign; these are the
domains of the modern starry sky which are not covered by the constellations
mentioned in the Almagest. We may assume here that since the boundaries
of constellations are not clearly defined in the Almagest, we can “expand” the
constellations so that they cover the empty domains in Figure 2.4. We will not
detail the procedure, because such domains are few, and they do not effect
our conclusions.

Now let us calculate mean percentages of poorly measured stars over each
of the seven domains. To this end, sum up the previously found rates for all
constellations of a domain and divide the sum by the number of constellations
in the domain. The results are displayed in Table 2.3.
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Figure 2.3. Rates of doubtfully identifiable stars in constellations of the Aimagest.

Conclusion 3. The domain A is measured better than the domains B, C, D
and M (namely, 6.3% poorly identifiable stars in the main bodies of the constel-
lations, and 12.6% in the constellations together with the informatas).

Conclusion 4. The domain B is measured worse than the domain A (19.6%
poorly identifiable stars for the “pure” constellations and 19% for constellations
with informatas).

Conclusion 5. The domain M (the Milky Way) is between domains Aand B
(10.5% for “pure” constellations and 10.3% for constellations with informatas).

Conclusion 6. The domains C and D are the worst measured (27.4% and
36.9% for D, and 52.9% and 53.6% for C).
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Figure 2.4. Rates of doubtfully identifiable stars in constellations of the Aimagest (graphical
representation)

Conclusion 7. The best-measured domain 1s Zod A, the part of the zodiac to
the nght of the Milky Way (Genuni, Cancer, Leo, Virgo, Libra, Scorpwus), the
rate for “pure” constellations here is 6 2%

Conclusion 8. The domain Zod B is measured with much lower accuracy than
Zod A, here the rate 1s 11 6% for “pure” constellations The domain consists of
Sagittanus, Capricornus, Aquanus, Pisces, Anes and Taurus

To represent the information in Table 2 3 visually, we display 1t in Figure 2 5,
where the white areas correspond to 0% to 10%, dotted areas to 10% to 20%,
obliquely hatched to 20% to 30%, and doubly hatched to 30% to 100%

Another display of this information 1s represented in Figure 2 6, the num-
bers of the 48 constellations are plotted along the horizontal line, 1n groups
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Table 2.3.
Percentage of
Number of Percentage of  poorly identified  Percentage of
constellations  poorly identified stars in rehably identified

Number of m the stars 1n “pure” constellations stars in “pure”

Domains  constellations  Almagest constellations  with informatas constellations
A 14 1-8, 24-29 6.3 12.6 93.7
B 12 16-23, 30-33 19.6 19.0 804
A—Zod A 8 1-8 6.4 8.1 93.6
B— Zod B 6 16-21 27.6 26.5 724
Zod A 6 24-29 6.2 18.6 938
Zod B 6 22,23,30-33 11.6 11.9 88.4
D 7 34-38, 47, 48 274 36.9 72.6
C 8 39-46 529 53.6 471
M 7 9-15 10.5 10.3 89.5

A, B, Zod A, Zod B, A— Zod A, B— Zod B, M, C, D. On the vertical the rate
of doubtfully identifiable stars in “pure” constellations is plotted. We assign
to each group of constellations a horizontal segment in Figure 2.6, at the level
corresponding to the mean rate for this group. It is obvious from Figure 2.6
that the group A4, consisting of Zod Aand A — Zod Ais measured best. The
group B is disposed considerably higher in Figure 2.6, which corresponds to
a worse accuracy of measurement.

The same information from the last row of Table 2.3 is also shown in Fig-
ure 2.7; here we plot along the vertical the rate of reliably identified stars in
“pure” constellations. Clearly, this graph can be obtained by subtracting the
values in Figure 2.6 from 100%.

Conclusion 9. The seven domains of the sky we have distinguished above differ
in the accuracy of measurement of stellar positions.

Conclusion 10.

a) A further investigation of coordinates of stars in the Almagest should be
based mainly on the stars of group A as the best measured. This group has the
minimal rate of poorly measured stars.

b) No conclusions should be based on a study of stars of groups C and D.
The very high rate of poorly identified stars in these domains shows that these
domains cannot be considered as well-measured. Probably, the distortion due to
refraction of light beams was one of the reasons that hindered the measurements.

c) We get an opportunity to range the twelve named stars according to the
reliability of measurement of their position. We should treat as the best measured
the stars in the domain Aand near it; there are nine such stars: Regulus, Spica,
Vindemiatrix, Procyon, Arcturus, Aselli, Antares, Lyra (Vega). The stars Sirius
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Figure 2.5. Rates of doubtfully identifiable stars in the seven domains of the Aimagest
(graphical representation)

(in the domain D), Aquila (in the domain B, at the left nm of the Milky Way),
Canopus (outside the map) turn out to be “unreliable” as disposed in the “poorly
measured” areas of the sky.

Remark. Apparently, Vindemiatrix should be excluded from the list of well-
measured stars, because although it is identified well (in particular, does not
appear 1 Table 6 of Ref. 22), the coordinates attributed to this star®? are
not based on an original manuscript of the Almagest. Peters writes about
the coordinates of Vindemiatrix: “Greek authorities give 20°10’, the Arabs
15°10’ (the difference amounts to five degrees of arc! — Authors). Peters has
adopted 16°0' from Halma, who is copied by Baily, and he remarks that Halma
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Figure 2.6. Rates of doubtfully identifiable stars in “pure” constellations of the Aimagest.

gives no authority. Itis clear that Halma took 16°0' from Halley. It is of course
correct, but is not supported by any manuscript” (Ref. 22, p. 104). It is clear
that in this situation Vindemiatrix should be excluded from further treatment.
Thus, only eight of twelve named stars are left among well-measured.

4. On possible distortions of stellar positions due to
atmospheric refraction

Working with star catalogs, we should keep in mind the phenomenon of
atmospheric refraction, which may distort essentially the positions of southern
stars. The refraction is due to optical properties of the atmosphere; it affects
the earthbound observations (as were all medieval observations). From the
mathematical point of view, the atmosphere may be treated as a succession
of concentric spherical strata; the density of the air is approximately constant
within a layer, but varies from layer to layer. It is well known that light
beams refract as they pass from a more dense stratum of air to a less dense
(Figure 2.8); the more the difference of densities, the stronger is the refraction.
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Figure 2.7. Rates of reliably identified stars in “pure” constellations of the Aimagest.

As a result, the slope of the beam to the earth’s surface increases, and the
beam approaches the normal to the interface surface of the layers. Figure 2.9
depicts the earth’s atmosphere, represented as the union of concentric layers,
whose density decreases progressively with altitude. A light beam from a
star A refracts as it passes the layers; as a result, it moves along a curved
trajectory, the equation of which can be found (and this is done in the theory
of atmospheric refraction). As shown in Figure 2.9, due to the refraction an
observer on the surface sees the star in the beam O B, while the real position
is in the beam O A’. Thus, refraction increases altitudes of stars. The closer
the star to the horizon, the longer the beam travels in the atmosphere, hence
the more is the apparent rise of the star. For higher stars the distortion is
negligible. The following approximate expression is found in the theory of
refraction for the refraction of zenith distances: the zenith distance & (the
angle between the zenith at the vantage point and the direction towards the
star) decreases by the magnitude approximately equal (for £ < 70°) to

B 273 ta
760 273 4¢°

p-60". né



4 DISTORTIONS DUE TO REFRACTION 43

pe |

- - - P

o)

refracted
beam

Figure 2.8. Refraction of a light beam at an interface between two media

ez

Figure 2.9. Refraction of a ight beam in the atmosphere

where B is the atmospheric pressure (in millimeters of mercury column, ad-
justed to 0° C), and ¢° is the temperature of air (in Celsius degrees). It is
obvious from this formula that tan £ is the main factor influencing the refrac-
tion. For small zenith distances (i.e., for stars with large altitudes), tan ¢ is
small, so refraction is marginal. The closer a star to the horizon, the greater is
tan £, and consequently the more are the distortions of stars’ positions caused
by refraction. Probably, this is the reason why in the Almagest(as well as in
other star catalogs) southern stars (that is, stars with small altitudes) are measured
much worse than stars of the Northern hemisphere. We have already encoun-
tered this circumstance when we found out that in the southern domains C
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and D of the star catalog of the Almagest the rate of doubtfully identifiable stars
is considerably higher than that for domains A and B. We should note that
ancient astronomers were not aware of the existence of refraction, and even
when refraction was discovered, an account of it was a highly nontrivial prob-

lem, coped with only as late as in the times of Tycho Brahe (probably, even
later).

5. Analysis of distribution of informatas in the catalog of the
Almagest

Table 2.2 contains data on distribution of informatas over constellations.
It is clear from the table that only 22 of 48 constellations are supplemented
with informatas. What does the presence (or the absence) of an informata
for a constellation mean? Various points of view hereof are possible, but the
following one appears to be most natural.

Conjecture. The informatas were supplemented to the constellations consid-
ered to be most important. In other words, the presence of an informata is a sign
of “especial attention” of the observer to the constellation.

Apparently, some constellations were distinguished as especially impor-
tant. We will not try here to find out the reasons for this distinction, because
they are absolutely unessential for us (probably, they were of astrological
nature, or some other). An especial attention was attracted by such constel-
lations, so their stars were measured several times (which could bring about
a higher accuracy). Moreover, having enlisted the stars that constitute the
“figure” of the constellation (in our terminology, the stars of the “pure con-
stellation™), the observer could add some “background” stars, which are not
in the skeleton of the constellation, but are within the figure (or immediately
near it). Thus the informatas could appear. As we already know, the stars
of informatas, apparently treated as being of secondary importance, could be
measured with lower accuracy than the stars of the “pure” (basic) constella-
tion; nevertheless, the presence of an informata may be appraised as a sign
of particular attention to the constellation.

Let us now look at the distribution of informatas over the starry sky of the
Almagest.

In order to characterize the distribution quantitatively, we calculate for
each constellation the percentage of stars which are included in the infor-
mata; thus, we calculate ¢ = (a/b) - 100% where a is the number of stars in
the informata and b is the number of stars in the constellation together with
the informata. So, for constellations without informatas, we have ¢ = 0. Then
we calculate the mean percentage for each of the groups 4, B, M, etc. Thus,
we find a numeric characteristic for each of the above domains of the sky,
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Figure 2.10. Rates of informatas (in percent) in various domains of the zodiac.

the mean rate of informatas in the domain. The results are displayed in Fig-
ure 2.10, following the pattern of Figure 2.6: we plot along the horizontal the
numbers of constellations in the Almagest, grouped into the seven domains.
Along the vertical we plot the mean percentage of stars in the informatas. As
a result, a horizontal segment corresponds to each domain.

An important statement can be inferred from Figure 2.10:

Conclusion. The distribution of “density of informatas” in the star atlas of the
Almagest agrees with the distribution of percentage of doubtfully identified stars
in pure constellations.

This conclusion may be also formulated as follows: The more attention
paid by the observer to a constellation (that is, the more stars are included in the
informata), the better the stars of the constellation are identified.

Indeed, as is obvious from Figure 2.10, the density of informatas is the
highest in Zod A, and the next is in 4. More attention is paid to the domain
A than to the domain B. In the Northern hemisphere, the least attention is
paid to the domain M.

The least attention is paid to the domain C (Southern hemisphere). Al-
though the domain D (also in the Southern hemisphere) acquired “compara-
tively much attention” (10.2%), the domain is measured worse. This is in no
way surprising: the domains C and D constitute the southern part of the sky,
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which, as we have stressed several times, is inevitably measured with lower
accuracy than the Northern hemisphere and the zodiac.
Thus, we draw the following statement from Figures 2.6 and 2.10:

Conclusion. The partition of the star atlas of the Almagest into seven domains
is confirmed. The quality of measurements in each of the domains (we mean first
of all the Northern hemisphere and the zodiac) is proportional to the “attention
paid to the domain”. The higher the density of informatas, the better the stars are
measured (the higher is the rate of reliably identified stars). The lower the density
of informatas, the lower is the rate of well-identified stars.

6. On reliability of measurement of latitudes and longitudes in
the Aimagest

We begin this section with R. Newton’s statement concerning accuracy of
measurements in the Almagest. We think, however, that this statement is ap-
plicable within a much wider context; in a sense, this statement characterizes
the situation around interpretations and readings of various historical doc-
uments. R. Newton tells of a well-known principle, “that we may call the
immortality of error”.

“We may state this principle in the following manner: Suppose that an error
made by a writer A has somehow been published, and suppose further that a
later writer B quotes and cites the error, accepting it as correct. The error then
becomes immortal and cannot be eradicated from the scholarly literature. I
do not maintain seriously that the principle has no exceptions. However there
are distressingly many examples for which the principle is valid, and any reader
can probably furnish his own examples” (Ref. 1, p. 161). Something like that
is going on around interpretation and dating of the Almagest. An analysis
of the traditional version attributing the Almagest to the beginning of the
Christian era requires a thorough reanalysis of its contents, which constitutes
a fairly complicated scientific problem. In this book we carry out a part of
this work, and the reader can estimate the complexity of the problem. The
main difficulty consists in the necessity to delve into the foundations of each
scientific assertion or opinion, the overwhelming majority of which has been
stated under the a priori (or silent) assumption that the Almagest was compiled
in the beginning of our era. These “excavations” require an analysis of the
original material, which in itself is quite arduous.

Let us now return to the question on the accuracy of measurement of
latitudes and longitudes. Aswe have demonstrated in Chapter 1, the nature of
ecliptic and equatorial coordinates implies a better measurement of latitudes
in comparison with longitudes. Moreover, if we use, for example, an armilla,
the errors may originate in an erroneous determination of the inclination of
the ecliptic. The fact is that having determined the angle the ecliptic makes
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with the equator, the observer fixes it and uses the device for measuring
coordinates, say, of stars, setting it with the help of this angle. Generally,
an armilla may be set with the help of any object the latitude and longitude of
which are known (for example, Ptolemy often used the moon); having done
this, we can find coordinates of any heavenly object. But in this case the errors
in determination of coordinates of the object used for setting automatically
generate errors in the coordinates of the measured object (see Ref. 1, p. 145).
Furthermore, we should keep in mind that in the case of the Almagest, we
deal with the lists in which letters were used for digits, which might bring
about confusions (and it actually did). For example, as noted by R. Newton
(Ref. 1, p. 215), and Peters and Knobel??, in ancient Greek notation, digits
1 and 4 were easy to confuse, because the digit 1 was denoted by a symbol
that was an early version of ¢ (in the time of Hipparchus), and the digit 4
was denoted by A. Clearly, the symbols A and A were easy to confuse. In
connection with that we should make an important remark: Our investigation
is based on the version of the star catalog of the Almagest adduced in the work
of Peters and Knobel**. As R. Newton notes, “By a careful comparison of
various manuscripts, it is often possible to detect errors that have occurred
in the course of successive copyings and to correct them. Peters and Knobel
... have made an extensive study of the star catalog in the Syntaxis (= the
Almagest— Authors), and theirs is probably the most accurate version of it
that exists” (Ref. 1, p. 216). However, as Peters and Knobel corrected some
digits in the Almagest, they of course used the a priori assumption that the
catalog had been compiled in the beginning of our era (they obviously did
not suspect other possibilities); consequently, from several possibilities they
probably chose the ones that matched this assumption best. Thus their work
on “correction” of numeric data in the catalog could lead to a “shift” of
the data towards the beginning of our era. Realizing this possibility (of the
“unintentional shift of the date”), we nevertheless used their version. The fact
is that if the computational investigation of the catalog reveals the necessity
of an essential redating, this must mean that this necessity is stable enough to
stand the biased correction. This is a vivid example of the problems that arise.
Strictly speaking, we should use the original manuscripts of the Almagest;
possibly, they contain numeric data that were ignored by later researchers as
contradictory to the a priori dating assumption.

Thus, we come to the necessity of a complete revision of the star catalog
of the Almagest and of addressing ourselves to the original (by the way, not
easily accessible) materials of ancient manuscripts in order to restore the real
data of the catalog, free of distortions introduced by the researchers biased
for the traditional dating. This, probably, is an example of “immortality of
error”. Anyway, we will stop our discussion of the subject here, and in the
sequel we use the version of Peters and Knobel.

Even if the biased correction of data was done, we may suggest that it could
affect only a minority of the 1025 stars in the catalog. Thus, our approach (we
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analyze families of stars rather than individual stars) must compensate for this
correction. Therefore we did not expect major errors originating in the use
of the canonical version of Peters and Knobel (which also has the advantage
of being accepted as fundamental by other researchers).

In our estimate of reliability of altitudes and longitudes in the Almagest,
we used the detailed analysis of the subject carried out by R. Newton in the
extensive Chapter IX of his book!). Of course, we omit details and confine
ourselves to quoting his results.

a) Latitudes. “The latitudes in the star catalogue were obtained by mea-
surement, almost surely made by a single observer using a single instrument
... 7 (Ref. 1, p. 255). Furthermore, “The latitudes in the star catalog have
not been altered from the observed values except perhaps by scribal accident”
(Ref. 1, p. 252). In R. Newton’s opinion, the latitudes in the catalog provide
a reliable material, obtained by Ptolemy himself or some of his predecessors
(presumably, by Hipparchus). This agrees perfectly with our above considera-
tions showing that measuring latitudes is a simpler procedure than measuring
longitudes and hence latitudes are more reliable data.

b) Longitudes. A different picture emerges here. “ ... The longitudes
were not obtained by any plausible observing process. ... The longitude val-
ues were fabricated by the process that has been described” (Ref. 1, p. 252).
And further, “The longitudes in the star catalog cannot possibly be the result
of observations” (Ref. 1, p. 252). First of all, as we have noted, measuring
ecliptic longitudes is a far more complicated and delicate procedure than that
of latitudes; besides, it is deemed that the longitudes of stars in the Almagest
are reduced to 137 AD. A reduction of this kind (to a given date) is realized
by merely adding a common constant to the ecliptic longitudes of all stars; the
constant is proportional to the magnitude of precession and depends on the
particular shift to the past the compiler wanted to apply to the data. R. New-
ton conjectures that the original longitudes (obtained experimentally by an
unknown observer) were later recalculated by somebody else for an unknown
reason. Here is the fundamental conclusion of R. Newton, which he draw
from an analysis of occurrences of fractions of degrees of arc in the catalog:
“The longitudes have been altered by adding an integral number of degrees,
plus 40’ ” (Ref. 1, p. 252). This operation, addition of an integral number of
degrees and a fraction, makes feasible an arbitrary change of the age of the
catalog (recall that a similar manipulation with the latitudes is impossible, or
at least much more difficult). To determine the particular magnitude of the
shift from an analysis of the longitudes alone is impossible; this is also noted
by R. Newton: “The distribution of the fractions by itself cannot tell us the
integer part of the amount that Ptolemy added to the original longitudes”
(Ref. 1, p. 253). Besides this trivial operation of shifting all longitudes by an
unknown number of grades, R. Newton finds the traces of a more delicate re-
calculation of the longitudes (Ref. 1, pp. 246-250). Thus, somebody had
done a significant change of the originally observed longitudes of stars,
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so the set of longitudes now at our disposal is not the result of observa-
tions, but of a processing (possibly, fairly complicated) of observational data.
N. A. Morozov conjectured that this processing had been carried out for
artificially “making the catalog more ancient”. We will not try to find out
the purposes of this recalculation, and will confine our further study to the
altitudes.

In conclusion, another résumé of R. Newton: “The longitudes tell a quite
different story from the latitudes. The distribution of the longitude fractions
does not come from any possible body of observations, whether they were
made by using one instrument or more, and whether they were made by one
observer or more” (Ref. 1, p. 248).

In traditional history of astronomy, the following simple method is often
used for dating catalogs. The ecliptic longitudes in the catalog are compared
with the modern ones, and the difference between them (approximately the
same for all stars) is divided by the magnitude of precession (approximately
50" per century); the resulting ratio gives the difference between the dates
of compilation of the new catalog and the ancient one. In particular, with
the help of this method, for example, the ecliptic latitudes in the Greek edi-
tion of the Almagest of 1538 have been attributed to the beginning of our
era. It is silently presumed in this method that the compiler of the ancient
catalog counted the ecliptic longitudes from the spring equinoctial point (of
his time). If that is really so, then the variation of longitudes accumulated
by our time may be interpreted as the effect of precession, and the above
algorithm provides the approximate date of compilation of the catalog. It
is important, however, that not all ancient authors took the spring equinoctial
point as the zero point for longitudes. 1t should not be presumed that ancient
astronomers counted longitudes exactly as modern astronomers do. Let us
consider, for example, the famous Historia Universalis Omnium Cometarum
by S. de Lubienietski, 1681. This book is known to be medieval; it contains
many comets up to 1860, and the author belongs to the medieval astronomic
school, where, as it seems, the system of base points and the rules for com-
pilation catalogs had been unified. However, in his star maps, Lubienietski
counts longitudes from the meridian through y Arii; as a result, all longitudes
he indicates are approximately 7° less than that in the Greek edition of the
Almagest of 1538 (see, for example, comparative tables and maps in Ref. 4,
vol. 4, pp. 233-234). If we now assume (as usually done dating the Almagest),
that Lubienietski counts longitudes from the equinoctial point, we will have
to attribute him and his book to the 5th century BC! This ludicrous result
shows that we should be very cautious about the above dating procedure. We
conclude also that even as late as in the 17th century no conventional zero point
for longitudes was established. Lubienietski counted longitudes from the star
in Aries, the author of the Greek edition of the Almagest from a point 6°40’
off y Arii, etc. Apparently, each medieval author had his own point of view
on the appropriate zero point for longitudes (clearly, the choice of the point
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is purely conventional). A more impressive example is the catalog of Coper-
nicus, who also counted longitudes from y Arii (in fact, Lubienietski followed
the tradition of Copernicus): y Arii is the only star in the catalog that has
longitude 0%. Consequently, if we apply the above method to Copernicus, we
will have to attribute him far into antiquity. Thus, the difference of ecliptic
longitudes cannot serve as a base for dating catalogs. The inconsistency in
the choice of zero points for longitudes is in fact quite natural. At the dawn of
astronomy many often rival schools existed, which used various approaches
to compilation of catalogs. Possibly, the schools used various traditions, in-
cluding specific choice of basic point (zero points) for various astronomic
characteristics. Some of them counted longitudes from the equinoctial point,
the other from y Arii, the third ... . The choice could be determined by
astronomic, religious, etc., considerations. Only when astronomy became an
international science was the unification of astronomic language reached, in
particular, the choice of the equinoctial point was fixed. By the way, from the
observational point of view this point is fictitious, moreover, it moves along
the sky, so it is impossible to fix it by indication of a nearby bright star. So it
is not surprising that some medieval astronomers chose to use for reference
an observable star (say, y Arii).

Since we study the star catalog of the Almagest (and other medieval star cat-
alogs), formally we “do not know” the point the longitudes are counted from
therein (the catalog itself contains no indication on this point). Of course, it is
traditionally accepted that the text of the Almagest (not the catalog) contains
some indications on the choice of the equinoctial point; however, using this
would mean that we involve some external information (not contained in the
catalog). As for dating the written text of the Almagest, this is a separate ques-
tion that has acquired no final solution (see Refs. 1,4). Therefore we will not
rely upon the ambiguous data, requiring additional examination. It is relevant
to note the existence of several star catalogs (among them, the catalog of the
Almagest and Al Siifi’s catalog) that only differ in longitudes. More precisely,
the latitudes given in the catalogs coincide, while all longitudes differ by a
constant (in the two catalogs, by 12°42’). An obvious conclusion is that at
least one of the catalogs is not compiled from observations, so it would be
clearly irrelevant to use longitudes it contains for dating.

7. Peters’ sine curve and the latitudes in the Aimagest

After remarks in the previous section, it makes sense to concentrate mainly
on the study of latitudes of stars in the Almagest. Here we encounter at once
an interesting phenomenon, unexplainable within the frames of traditional
studies of the Almagest, which we call Peters’ sine curve. The phenomenon
is described by Peters in Ref. 22, where he carried out an analysis of the
distribution of mean error in the latitudes of stars of the Almagest considered



7. PETERS’ SINE CURVE 51

0° 40° 80° 120°160°200°240°280° 320°360° 40° 60°

T T A ¥ L T T 1 T 1 1 1

+20'r

Peters' sine
+15'F curve

+10' |

360°

T

-10' F

-15' -

Latitudinal deviation in the zodiac

Figure 2.11. The sine-like dependence of latitudinal errors of longitudes, discovered in the
Almagest by Peters; so far, this dependence has received no explanation.

as function of the longitudes. He computed the positions of zodiacal stars for
100 AD, that is, for the purported date of compilation of the catalog. Then,
for each zodiacal star A4, he calculated the latitudinal deviation A, = B, — b,
where B, is the latitude as given in the Almagest, and b is the computed
value of the latitude in 100 AD. Thus, A is “Ptolemy’s error” in the latitude
of the ith star (under the assumption that the catalog was compiled about
100 AD). Then Peters divided the ecliptic into 10°-long sectors and found
the mean value of the deviation for each sector (over zodiacal stars of the
Almagest in this sector). The ensuing values differed for different sectors;
as a result, we obtain a graph that exhibits the behavior of the deviation as
a function of latitudes; see Figure 2.11. The curve resembles the sine curve
with the amplitude about 20 minutes of arc. We can select the sine curve that
approximates the curve in Figure 2.11 best (within the class of all sine curves);
the resulting sine curve is the Peters’ sine curve.

The fact of the existence of this curve is difficult to explain on the basis
of traditional views of the Almagest; at least, we have never seen a published
attempt of reasonable explanation of this obviously periodic effect.

We should note that Ref. 22 exposes no details of Peters’ calculations be-
hind the curve; in particular, it is not clear what particular stars were used for
the calculations. It is only known that Peters did not take into account all zodi-
acal stars of the Almagest. Therefore we have carried out the computation of
the curve; see the discussion of our results, conclusions and comments in the
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Figure 2.12. The dependence of longitudinal errors of longitudes, discovered in the
Almagest by Peters.

sequel. Here, we only note that our results provide a complete explanation
of the strange curve.

Remark. Together with latitudes, Peters examined from a similar point of
view the longitudes. In other words, he computed the mean longitudinal
deviation (in 10°-long sectors) and obtained a graph similar to that for the
latitudes, see Figure 2.12. The graph exhibits the behavior of the mean lon-
gitudinal deviation as a function of the ecliptic longitude. This graph does
not resemble any sine curve; it also has lesser amplitude and two clearly de-
fined local maximums. Possibly, the obviously irregular nature of this curve
is a consequence of the unknown recalculations of ecliptic longitudes men-
tioned by R. Newton (see the previous section). Anyway, as we have already
stated, the longitudes are hardly reliable data, so we see no reason for a more
detailed study of the graph in Figure 2.12. An informative analysis of the
graph, probably, will not be possible before we restore the mechanism of the
recalculation of the longitudes, which must be very difficult.



Chapter 3

The Attempts to Date

the Almagest with the Help
of Simplest Procedures,
and Why They Fail

1. An attempt to date the Aimagest: Comparison with
computed catalogs in fast stars

1. We have suggested in Chapter 1 an algorithm for computing stellar
positions to the past. Having at our disposal the collection { K(¢)} of catalogs
computed for various dates, we now can try to estimate the date of compi-
lation of the catalog of the Almagest t 4 from comparison with the computed
catalogs; it is natural to treat as an estimate for ¢4 the value of ¢ for which
K () agrees best with the catalog of the Almagest. Not fixing criteria of good
agreement so far, let us look at how to compare the catalog of the Almagest
with K(#). In order to compare, we first need to reduce the two catalogs to
the same coordinate system; to that end we bring the ecliptic of the Almagest
into coincidence with the ecliptic of K(¢), that is, with the true position of the
ecliptic in the year ¢. This enables us to compare latitudes; to compare longi-
tudes, we need to fix the spring equinoctial point in the ecliptic of the Almagest
(for the year t). We choose this point so that the mean longitudinal error over
zodiacal stars of the Almagest will be equal to zero (we use the identifications
of stars of the Almagest suggested in Ref. 22). To calculate this point is not
difficult: it is known 2226 that t = 18.4 (in 60 AD) was at the beginning of the
zodiacal sign Aries, and that it moves at the rate of approximately 49" a year
(the velocity of precession).

This choice of the equinoctial point, though statistically best, introduces
an error. We could avoid this error by confining ourselves to the latitudes;

53
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we will do so in Chapters 3-5; the arguments in this section are prelim-
inary.

2. Wewill choose for comparison nine fastest stars among those indicated
in the Almagest (according to Ref. 22); these are the stars whose velocities
of proper motion exceed 1” per year. The stars are o Cent (4”.08 per year),
o’ Eri (3”.68 per year), « Boo = Arcturus (2”.28 per year), t Cet (1”7.92 per
year), « CMa= Sirius (1”.33 per year), y Ser (1”.32 per year), ¢ Per (17.27
per year), « CMi = Procyon (1”.25 per year), n Cas (1”.22 per year). All the
nine stars are present in the Almagest, and are traditionally identified 2 with
the stars with the Baily numbers 969, 779, 110, 723, 818, 265, 196, 848, 180.
We depict each of these stars except o Cent, which is very far to the south
and whose coordinates are given in the Almagest with the huge error of 8°, as
white circles in Figures 3.1-3.8; near each circle we write the corresponding
Baily number of the star in the Almagest. Thus we get eight small domains in
the star map of the Almagest (we used the coordinates of the Almagest), each
of which contains one of the fast stars.

Let us now depict the true positions of the eight stars in the star map rele-
vant to Ptolemy’s catalog; the positions depend on ¢ (as well as the identifica-
tion of the catalog with K(¢)), so we actually obtain eight trajectories that the
stars pass with variation of ¢. These trajectories are shown in Figures 3.1-3.8.

Let us consider the moments 1, . .., g when the stars are nearest to their
positions given in the Almagest. The eight values of ¢ are different; if all of
them, or at least most of them were close to each other and to some average
value ¢*, that would be a strong reason to suggest that the catalog was compiled
about t*. However, this is not the case: the eight values are scattered chaotically
in the interval —70 < t < 30, that is, from 1000 BC to 9000 AD! The following
table gathers the results of the calculation.

In fact, this spread of individual estimates of dates ¢ is not surprising.
Each of the eight stars is represented in the Almagest with an error. An
estimate for this error is provided by the mean angular deviation of stellar po-
sitions given in the Almagest from the true positions. Since the overwhelming

The moment of the closest approach

Star to the star of the Almagest minimal distance
Arcturus (@ Boo) 900 AD 40
Sirius (¢ CMa) 400 AD 10
Procyon (e CMi) 1000 AD 20
o* Eri 50 BC 5
n Cas 1100 BC 40
t Per 9700 AD 70
T Cet 220 AD 15

y Ser 700 AD 8¢
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true . Sa

(a)

Figure 3.4 (a). True trajectory of the proper motion of o? Eri, in comparison with positions
of stars of the Almagest with which it may be identified. The dashed lines depict 45’ neigh-
borhoods of the stars of the Aimagest. The choice of the size is due to the error in stellar
coordinates characteristic for description of Eridanus in the Aimagest.

majority of stars are almost fixed, the mean error depends but little on the
epoch for which the coordinates were computed. To find the mean error, we
use the table in Ref. 22 that compares stellar positions given in the Almagest
with the true positions in 130 AD. Around each point corresponding to a fast
star, draw the circle of the radius equal to the mean error over the constellation
that contains the star (see Figures 3.4-3.8). The projection of the circle on the
computed trajectory of the star provides an estimate for possible deviation
of the date ¢, from the true date of compilation ¢4. For the named stars
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(Arcturus, Sirius and Procyon), we chose 10/, the value of the scale division
of the catalog of the Almagest as the radius of the circles (Figures 3.1-3.3).

3. In this situation, the question naturally arises whether it is possible to
treat for some reason some of the eight stars as more reliable than the other.
If yes, then we should use these stars for dating, neglecting the rest. It is
natural to choose as reliable the stars that are measured with best accuracy.
But how can we distinguish such stars? Of course, we could do this using the
last column of the above table, that is, assuming, say, that the coordinates of
o? Eri were measured to the accuracy of 5, and the coordinates of Arcturus
to the accuracy of 40’. This approach was used in Ref. 27, an exposition of
an attempt to date the Almagest; apparently, the same nine fast stars were
used. The resulting date is close to traditional, about 50 BC (see the above
table). However, the following questions arise at once: How could it happen
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Figure 3.5. True trajectory of the proper motion of n Cas, in comparison with positions of
stars of the Almagest with which it may be identified. The dashed lines depict 65’ neigh-
borhoods of the stars of the Aimagest. The choice of the size is due to the error in stellar
coordinates characteristic for description of the star o? Eridani in the Almagest.
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Figure 3.6. True trajectory of the proper motion of « Per, in comparison with positions of stars
of the Aimagest with which it may be identified. The dashed lines depict 65’ neighborhoods
of the stars of the Aimagest. The choice of the size is due to the error in stellar coordinates
characteristic for description of the star o? Eridani in the Aimagest.

that all three stars of the first magnitude, all three having names in the catalog
(Arcturus, Sirius and Procyon) had been measured very roughly (with errors
about 1° if we assume 50 BC as the date of compilation — see Figures 3.1-
3.3), while the faint and hardly visible 0* Eri (whose magnitude, according to
modern measurements is 4.5) had been measured with an exclusive accuracy
(within 5")? In fact, the stars like Arcturus, Sirius, Procyon, Regulus and Spica
(that is, the stars that are named in the Almagest) apparently were used as
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Figure 3.8. True trajectory of the proper motion of y Ser, in comparison with positions of
stars of the Almagest with which it may be identified. The dashed lines depict 65’ neigh-
borhoods of the stars of the Almagest. The choice of the size is due to the error in stellar
coordinates characteristic for description of Serpens in the AImagest.

reference points for observations, and the accuracy of measurement of these
stars had to be especially high (see, for example, Ref. 25). As for o® Eri,
this is an ordinary star, surrounded by equally faint stars. In the Almagest,
the star 779 (traditionally identified with o? Eri) is described merely as “the
middle one of these”. Furthermore, the other question arises after Figure 3.4:
Why is the star 779 of the Almagest identified with o> Eri? Of course, this
identification could be obtained from the fact that the coordinates of o? Eri
and the star 779 of the Almagest agree best (say, better than the coordinates
of 0® Eri and the star 778). But then the identification 0® Eri = 779 of the
Almagest relies heavily on the date attributed to the Almagest! For example,
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should we “know” that the Almagest had been compiled in 1000 BC, we would
identify o? Eri with the star 778 of the Almagest, and then date the Almagest
from the minimal possible distance between the two stars, getting 1000 BC
as the date. Note that in this case the coordinates in the Almagest and the
coordinates of real stars would even agree much better, which is obvious from
Figure 3.4. If we “knew” that the Almagest had been written in 1500 AD, then
we would identify o? Eri with the star 780 of the Almagest and then, using the
above approach, attribute the catalog to the late Middle Ages or even to the
future — see Figure 3.4. Thus, we merely have a vicious circle.

However, even if we exclude o? Eri, no date for the Almagest can be derived
from the remaining eight stars — the scatter of the dates provided by the
stars is too wide. Even the dates from the three stars of the first magnitude,
Arcturus, Sirius and Procyon, are scattered from 400 AD to 1000 AD (see
the above table). Furthermore, we should keep in mind that the dates (for
example, 900 AD for Arcturus) are only the dates of the closest approach of
the true position of the star with the position given in the catalog; we should
also take into account the intervals about these dates in which the approach
lies within the accuracy of measurement. Still worse, we have to use individual
errors of measurement rather than mean errors.

Let us now formulate our conclusions.

1) Using the coordinates of a star for dating the Almagest, we must first
check that its identification with the star in the modern sky does not depend
upon a particular date ascribed to the catalog; otherwise we get into a vicious
circle.

2) Since the displacements even of the fastest stars accumulated within the
historical period of time are rather small (see Figures 3.1-3.8), the stars of
the Almagest that are measured sufficiently well should be selected for dating
purposes. A star moving at the rate of 2” per year shifts by mere 3.33 minutes
of arc in a century. Therefore, if we want to get a date for the Almagest from
a particular fast star with accuracy within 300 years, we should be sure that
the star is represented in the Almagest with accuracy within 10’. It is known
that the real accuracy of the catalog is much worse 2. On the other hand,
the stars represented with accuracy worse than 20’ are practically useless (the
dating interval they provide is 1200 years long). The selection of stars that are
measured by Ptolemy comparatively well is discussed in Chapters 5 and 6.

2. An attempt to date the Aimagest: Comparison with
computed catalogs in fast and named stars

1. In the previous section we have shown that the comparison of the
Almagest with the computed catalogs K(¢) in eight fastest stars leads to no
value t* at which the Almagest and K(t) agree best: each star gives its own
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value 1 for t*, and these individual values are scattered in an interval several
thousand years long. It might happen, however, that if we extend the sampling
and consider more stars, then we get a collection of individual dates {¢}, a
considerable part of which is grouped in a more or less narrow interval (an
interval of about 500 years in length would already be good for us); then
we would be able to get some information about the true date of Ptolemy’s
observations ¢ 4. Furthermore, extending the sampling, we get the opportunity
to apply standard methods of statistics to estimation of z 4.

For dating purposes, only sufficiently fast and sufficiently well measured
stars may be useful. The two properties, fast motion and accuracy of mea-
surement are, so to say, complementary: the faster is the star, the greater
error of measurement is admissible.

The above considerations lead to the following choice: let us include in
the sampling the stars that are sufficiently fast (such that at least one of the
velocities in equatorial coordinates aj999 Or 81900 €xceeds 0”.5 per year), and
“famous”, or named stars, that is, the ones that have (by now) proper names.
Of course, some of them received names after compilation of the Almagest,
but, on the one hand, names of stars apparently were not lost with time (al-
though could change), so the stars that were named in the time of compilation
of the Almagest must remain named now; on the other hand, the fact that a
star has finally acquired a name means that it had a special significance in
ancient or medieval astronomy (the names were mainly attributed to stars
in antiquity and the Middle Ages). It is natural to suppose therefore that
Ptolemy gave special attention to such stars, and measured their coordinates
more thoroughly.

In this section we take the interval 0 < ¢ < 30 (1100 BC to 1900 AD) as
the a priori dating interval.

2. Thus, let us consider the union of the lists of fast and of named stars
(see Tables 1.1 and 1.2) and select those stars which are present in the Almagest
(according to Ref. 22). The ensuing list contains 80 stars. For each of them,
we compute the trajectory in the coordinates of the Almagest, as we did for the
eight fastest stars in the previous section. Recall that we fixed ¢ as the a priori
date and found true positions of stars in the year ¢ (in ecliptic coordinates
of the year ¢) which we depicted as a point in the star map of Ptolemy (that
is, in the map constructed according to the Almagest). Varying the value of
t over the interval we have fixed, we make the point move along the atlas;
consequently the distance varies between this point and the position of the
star given in the Almagest our star is identified with (recall that we use so far
the identifications of Ref. 22). Suppose the distance attains the minimum
value at ¢ = ¢,; in the previous section we called the moment ¢, the individual
date provided by the star. A deviation of ¢ from ¢, to either side leads to an
increase of the distance between the computed position of the star and the
position given in the Almagest. We assign to each star in our list the individual
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dating interval [t,1, t,5], the set of all ¢ for which the distance does not exceed
30’'. Generally, this interval can be empty (if even the minimal distance at
t =1, is greater than 30’). The value ¢, = ¢ is the center of this interval — see
Figure 3.9. The value 30’ for the maximal admissible distance between the
star of the Almagest and the true (= computed) position is chosen so that the
distances do not exceed it for a majority of stars of the Almagest. Indeed, if we
assume that the mean square deviation in angular distance for the Almagest
is about 40’ (which agrees with estimates of Refs. 22 and 28), then more than
half of the stars must be represented to an accuracy within 30’ (if we assume
normality of distribution and independence of errors in positions of individual
stars; our argument is quite rough, so deviations from these assumption will
not affect our conclusions).

The resulting set of intervals is shown in Figure 3.10. Time scale from¢ = 0
(1900 AD) to ¢t = 30 (1100 BC) is plotted along the vertical. In each interval,
the center is marked (corresponding to the optimal individual date ¢,) and the
points that correspond to distances 10’ and 20’ (see Figure 3.9); the parts of
intervals corresponding to less distances than 10’ are marked by bold lines;
the ends of intervals are marked by arrows. No interval is assigned to many
stars from our list; this means that either the interval is empty (the distance
between the true position of the star and the one given in the Almagest always
exceeds 30'), or that the interval lies outside the a priori interval 0 < ¢ < 30,
or contains the a priori interval. In the latter case, the coordinates were
apparently measured well (to an accuracy within 30"), but they provide no
refinement for the date within the a priori interval.

The Baily numbers of the stars in the Almagest whose 30’ approach intervals
cover the a priori dating interval 0 < ¢ < 30 are 35, 36, 163, 197, 222, 316, 318,
376, 768. For some stars the individual dating intervals extend outside the a
priori dating interval, so we only expose their common part in Figure 3.10.
Near each interval, we write the Baily number of the star, and after the equality
sign, modern denotation of the star identified in Ref. 22 with the star in
question. The dashed line marks the level ¢ = 18, the traditional date for the
Almagest about 100 AD.

3. It is obvious from Figure 3.10 that no values of t that belong to all
individual dating intervals exist. If we raise the value of admissible accuracy
(which we took as 30/), thus expanding the individual dating intervals, the
point where they first intersect is about ¢ = 12 (700 AD), at an accuracy of
about 60’ = 1°. If we increase the admissible accuracy still more, the interval
which is the intersection of all individual dating intervals expands in both
direction from the value ¢t = 12.

However, we cannot accept the value ¢t = 12 as a date for compilation
of the Almagest. Indeed, the fact that the intersection first appears at the
value of accuracy of about 1° means that our collection of stars contains very
poorly measured stars. We do not know the exact accuracy of measurement of
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Figure 3.10. The collection of nontrivial individual dating intervals for all fast and named
stars. The points are marked in each interval where the distance between the star of the
Almagest and the computed position is 10’ and 20'.

particular stars in the Almagest; if we estimate the accuracy from below with
the help of sampling mean square error at ¢ = 12, then we will have to take a
very large value, about 2°, for the admissible accuracy. At this accuracy, the
intersection of all individual dating intervals covers the time from 500 BC to
our day. Furthermore, the value ¢+ = 12 is unstable, in the sense that minor
alterations of our collection of stars (obviously, chosen fairly arbitrarily) bring
about considerable variations of the date.
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4. Letusnow apply asimilar procedure to the collection of fast and named
stars, only using as a distance between a stellar position in the Almagest and
the computed position, the latitudinal deviation, the length of projection of
the segment connecting the two points on the meridian of the coordinate
system of the Almagest (Figure 3.11). As we know, longitudes are given in the
Almagest with much lower accuracy than latitudes, (see, for example Ref. 22
and Chapter 2), so we do not use them.

Figure 3.12 shows the collection of intervals for the case when latitudinal
deviation is taken for distance. Again, we do not show intervals that cover the
interval 0 < ¢ < 30 (1100 BC-1900 AD); the numbers in the Almagest of such
stars are 1, 35, 36, 78, 111, 149, 163, 189, 222, 234, 287, 288, 315, 316, 318,
349, 375, 393, 410, 411, 424, 467, 469, 510, 713, 733, 760, 761, 768, 812, 816. A
comparison of Figures 3.12 and 3.10 shows that the latitudes of stars are given
in the Almagest with a much better accuracy than their positions (determined
both by latitudes and longitudes); in particular, Figure 3.12 contains many
more intervals than Figure 3.10 (where the corresponding intervals turned
out to be empty). The individual dating intervals of all stars but two (935 =
2g Cent and 940 = 5q Cent) first intersect at t = 12 (700 AD) at the value of
accuracy 40’ (in latitude).

Generally, although switching from angular deviations to latitudinal devi-
ations improves accuracy, and hence allows more accurate statistical conclu-
sions, the ensuing dating intervals are still too large: they cover the interval
4 <t <20 (1000 BC-1500 AD). These intervals provide no nontrivial infor-
mation about the date of Ptolemy’s observations.

3. An attempt to date the Aimagest from comparison of stellar
configurations

1. In the previous sections, we tried to date the Almagest considering
various stellar configurations that vary with time because of proper motions
of the stars they consist of. For each individual star of the configuration, we
compared its position in relation to the sphere of fixed stars with the position
given in the Almagest; this comparison required use of Newcomb’s theory,
providing a description of motion of the ecliptic frame of reference in the
sphere of fixed stars.

Let us now look at what we can obtain from a method that does not use
Newcomb’s theory. The idea of the method is quite simple: we compare
not the positions of stars in the “real” (computed) sky with the positions in
the Almagest, but the geometry of varying real stellar configurations with the
geometry of stellar configurations in the Almagest. This comparison only re-
quires knowledge of proper motions of stars, but not of Newcomb’s theory.
The proper motions of stars are now measured with very high accuracy on
the basis of telescopic observations.???° The only information we need in this
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section is the velocities of proper motion of stars and the table of identifica-
tion of stars of the Almagest with the stars of modern catalogs. We use the
identifications of Ref. 22, dropping the cases indicated as doubtful.

Although Newcomb’s theory is very precise (its errors are several orders
of magnitude less than the scale division of the Almagest), from the compu-
tational point of view, configurations are more convenient, first of all for the
simplicity of calculations. Though the abandonment of Newcomb’s theory has
some drawbacks, confining ourselves to comparison of configurations, we lose
the possibility to separate coordinates (and study separately, say, latitudinal
deviations), and are left to compare angular distances alone.

2. We will still compare the positions of fast stars in the real sky with
the positions given in the Almagest, but now we will compare positions in
relation to a certain set of reference stars, distinguished both in the real sky
and in the Almagest. We include in the set the stars which either have proper
names (Aldebaran, Shiat etc.) or stand out for their brightness among the
nearby stars. We did not include the stars the positions of which could be
distorted by refraction. The total number of the reference stars is 42; see the
Appendix for the list (Table Ap. 1). Some of these stars have notable velocity of
proper motion (Arcturus, Sirius, Procyon, Capella, Aquila, Denebola, Caph
and Regulus). Thus, the true position of a star is determined in reference to a
basis, which also moves, and the ensuing “dynamic” picture is compared with
the corresponding picture fixed in the Almagest. As a measure of deviation
for this comparison, we will use the mean deviation of angular distances:

1 N
(1) Aty = 5 3 _|orea(Si, 01, 0) = pam(Si, O))]
j=1

where N is the number of reference stars, prcai(Si, O;, t) is the distance be-
tween the star §; and the jth reference star O}, and paim (S;, O;) is the distance
between the positions of the two stars in the Almagest. We will call the mo-
ment ¢ at which A;(¢) attains the minimum value the individual date from the
ith star. If for most fast stars of the catalog the individual dates #; concentrated
in a small temporal interval, then we should expect that the true date of com-
pilation of the catalog is somewhere inside, or near this interval. Regrettably,
this is not the case.

3. We have studied the behavior of deviations A;(¢) for eight stars,
Capella (222), Arcturus (110), Aquila (= Altair, 288), Denebola (488), Regu-
lus (469), Sirius (818), Procyon (848), and Caph (189); in parentheses we give
the Baily number of the star in the Almagest). We deliberately chose “famous”
and brightest stars among fast stars of the Almagest, and abandoned fainter
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Figure 3.13. Latitudinal deviation A, (t) dependence on the a prion date ¢ for the eight fast
named stars of the Aimagest (upper) and the graph of averaged deviation (lower)

stars, because, as we have noted above, the coordinates of faint stars in the
Almagest are very inaccurate, so the inclusion of faint stars will only add to
the scatter of individual dates. Figure 3.13 displays the graphs of deviations
A,(t) as functions of . We also display the graph of mean deviation over
all the eight stars; the mean deviation is almost constant all over the interval
1100 BC-1900 AD (bold line in Figure 3.13).

4. Conclusions. The abandonment of Newcomb’s theory has led to no
concentration of individual dates about any particular date. Hence, the wide
scatter of dates is due to characteristics of coordinates given in the catalog
(to their low accuracy, the presence of a significant systematic error, non-
homogeneity of the catalog, etc.) rather than to the method of recalculation
of coordinates. In the next section we analyze the stellar positions given in
the Almagest and the general structure of the catalog, in order to reveal the
characteristics of this kind.
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4. Conclusions and directions of further study. Description of
the method. Plan of the following chapters

1. In Sections 1-3 of this chapter we have exposed several attempts to
date the Almagest from the numeric data contained in its star catalog; all the
attempts ended in failure. We considered them for the following reasons.
First, now the reader can estimate the difficulties that arise in dating the
catalog “intrinsically” (from the data it contains). Second, we wanted to
justify choice of the problems to be discussed in the sequel.

We should note that an attempt to date the Almagest from the numeric data
it contains was made earlier 2’-3°; an analysis of these works shows that the
attemptisincorrect. Regrettably, the authors of Refs. 27 and 30, not specialists
in mathematical statistics, misinterpreted the results of their computations
and came to an unjustified conclusion about the date of compilation of the
catalog. A detailed analysis of Refs. 27 and 30 is given in Ref. 31.

The main conclusion at this step is that dating the Almagest requires a

thorough preliminary analysis of the catalog, touching upon the following
questions.

1) The problem of identification of stars in the Almagest with the stars in
modern catalogs. In Section 1 we have shown that the problem does not always
find a firm solution and that the solution may depend on a presupposed date
for the catalog. Therefore, before dating the catalog, it is necessary to reveal
and exclude from further treatment all doubtfully or ambiguously identified
stars.

2) Analysis of the nature of possible errors occurring in the catalog. The
magnitudes of errors in coordinates of stars typical for the Almagest may lead
to the conclusion that no nontrivial information about the date can be deduced
from these data. However, there is a possibility to cope with this difficulty
if we manage to isolate the systematic component of the errors. This will let
us compensate for it, thus improving accuracy of the catalog, which probably
will lead to a refinement of the estimate of the date of the catalog.

3) Analysis of accuracy of the catalog reached in various collections of stars.
The aim of this analysis is to distinguish in the catalog groups of stars the
coordinates of which were measured by Ptolemy to some guaranteed accuracy
A. As soon as we distinguish such a group, it provides a set of possible dates
for the catalog, namely, the dates when the real positions of stars were within
A from the ones given in the catalog. If the ensuing set (the interval) is
considerably smaller than the a priori fixed historical interval, this provides
nontrivial information about the real date of compilation of the catalog. We
use this idea in Chapters 5-7.

We will discuss here the three problems briefly; a more detailed analysis is
carried out in subsequent chapters of this book.
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2. The overwhelming majority of stars in the Almagest are unambiguously
identified with stars in modern catalogs. Nevertheless, in Chapter 4 we carry
out the identification anew, in order to be able to select stars for further
treatment; the identification in most cases agrees with the one in Ref. 22,
but we detect several stars whose identification with the stars in the Almagest
depends on the choice of the epoch ¢ (for example, 0? Eri and u Cas); in
Ref. 27 these stars are identified under the presumption that the catalog of
the Almagest was compiled about the 1st century AD. It is obviously senseless
to use these stars as a base for dating the catalog, so we exclude them from
further treatment. Note that in Ref. 22 the identifications of o Eri and u Cas
are also stated as doubtful.

After identification, we obtain the table T the lines of which contain the
following data about each identified pair of stars: (1) the Baily number of the
star in the Almagest, (2) the direct ascent a; and the declination §; of the star
from the modern catalog at t = 0, (3) the components of velocity of proper
motion of the star, (4) the longitude /; and the latitude b; of the corresponding
star in the Almagest.

Denote by «; (¢) and §;(¢) the equatorial and by L;(¢) and B;(¢) the ecliptic
coordinates of the ith star in the computed catalog K(¢) for the year ¢. The
problem is to find the value of ¢ for which the set of coordinates V() =
(Li(t), Bi(t))i>1 or the set W;(t) = (a;(t), 8;(¢))i>1 agrees best with the set
Va= i, bi)ix1.

3. Above, we have shown that a straightforward comparison of true po-
sitions of stars with the ones given in the catalog does not lead to a reliable
date for the catalog, due to the errors it contains. Therefore only the account
of all errors may bring about a reliable date.

We will distinguish three types of errors, group errors, random errors, and
outlies.

Group errors are the distortions of data that arise in measurements or
recalculations and result in a displacement of a group of stars as a whole.

Random errors are the errors in coordinates of individual stars; mostly,
they are introduced by errors of measurement within the scale division of
the measuring instrument. Random errors displace each star by a random
variable, whose mean value is zero.

Outlies originate in unexpected or unknown to the observer circumstances
(refraction, copying errors, etc.). They affect coordinates of individual stars
and usually have greater values than the scale division of the measuring in-
strument. The errors of this type are sufficiently sparse.

Our main goal is to find and compensate for the group errors. The way to do
this is discussed in Chapter 5, where we give formulas for group errors and
describe how to estimate the accuracy of the ensuing values. That accuracy
problems are crucial in the problem, we have already had a chance to see.
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The errors of the Almagest proper are treated in Chapter 6. It turns out
that the coordinates of stars in the Almagest carry considerable group errors that
displace certain stellar configurations as a whole. The values of the errors for
different groups of stars may differ; this is where the term comes from. In fact,
we will see that in comparatively large domains of the sky, the group errors
for comparatively small constellations may coincide with each other and with
the common group (systematic) error for the domain.

Each displacement corresponding to a group error may be described in
terms of three parameters; we choose the following parameters (basic errors;
see Figure 1.1).

1) The error t in the position of the spring equinoctial point Q(t4) made by
the observer in the year of observation t 4, in the direction of the ecliptic. In other
words, 7 is the projection on the ecliptic of the displacement of the position
of the equinoctial point used in the catalog from its true position.

2) The error B in the position of the point Q(t 4) in the meridian direction (the
projection of the displacement on the ecliptic meridian).

3) The error y in the angle ¢ between the ecliptic and the meridian. Any
measurement of ecliptic coordinates requires a previous measurement of the
angle e. An error y in this angle leads to the turn of the ecliptic used in the
catalog through y in relation to the true ecliptic.

The possibility of group errors has been discussed by many researchers?>14;
here we will only mention their possible causes.

The error t could arise from an inaccurate determination of the spring
solstitial point. Another cause for this error is a reduction of the catalog by
the observer or a later researcher to a date different from the date of original
observations. Sometimes such a reduction was probably done for methodical
reasons (say, an urge to reduce the catalog to a round date), and sometimes
for disguising the real date of observations and attributing the catalog to
a different epoch!; sometimes this was a consequence of a change of zero
point for longitudes: generally, ancient astronomers could use various points
for counting longitudes off. Any variation of the zero point led to adding a
constant to all ecliptic longitudes. Clearly, t does not affect latitudes. This is
one of the reasons why latitudes are more reliable data than longitudes, and
this is why we mainly work with latitudes, using information about longitudes
as auxiliary. Consequently, latitudinal deviations only require two parameters
to determine group errors (we use B and y).

What can we say about g and y? Since the equatorial coordinates of
stars may be determined from immediate observations sufficiently easily and
accurately®?, it should be expected that for an accurate observer, the error g
must not be large. The error y is of entirely different nature. An estimate
of position of the ecliptic is a result of fairly complicated calculations or of
nontrivial measurements (see Chapter 1), so y may be substantially greater
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Figure 3.14. (a) Parametrization of systematic error in terms of y and ¢. (b) Geometric
sense of the parameters y, g and ¢.

than B. Some indications that the systematic error y exists can be found
in Refs. 22 and 4; moreover, some authors estimate it at about 20’. Our
calculations in Chapter 6 confirm this estimate.

Sometimes, we will use parameters ¢ and y, more convenient for compu-
tations than B and y. Figure 3.14 explains the sense of these variables. From
the point of view of latitudinal deviations, the error reduces to the error in the
position of the ecliptic plane; we will call the (inexact) position of the ecliptic
used in the catalog the ecliptic of the catalog. The position of the ecliptic of
the catalog in relation to the true ecliptic in the year ¢ 4 of compilation of the
catalog may be described in terms of the angle ¢ the equinoctial axis QR (of
the year ¢ 4) makes with the axis C D where the planes of the true ecliptic and
of the ecliptic of the catalog meet, and the angle y between the two planes.
We will use the angles ¢ and y as parameters for the group error.
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Generally, the compiler of the catalog could make different group errors in
various domains of the sky, say, because of resetting the instrument or change
of the vantage point, etc.

In Chapter 2 we have distinguished seven domains of the sky (Figure 2.2),
differing in reliability of measurements. In Chapter 6 we will see that they
also differ in group errors and in accuracy of measurement.

4.  We do not know the moment ¢ 4 of compilation of the Almagest, so for
each moment ¢t we compute the values ¢(¢) and y(¢); the method of com-
putation is a combination of the method of least squares with the regression
problemonasphere. The accuracy of the method is discussed in Chapter 5. As
a result, we obtain graphs of two functions, .. () and @ga(2) (Figure 3.15),
that ensue from statistical processing of coordinates of stars in various do-
mains of the sky. The subscript stat indicates that the functions come from
statistical processing; the two functions represent regular components of the
errors present in large domains of the sky under the assumption that the true
date of the catalog is z. We call such errors systematic. In large domains of
the sky, consisting of several constellations, statistically computed systematic
errors are mean values of group errors characteristic for individual constella-
tions. Of course, only in the case that all group errors are equal to each other do
they coincide with the systematic error, so only in this case we do not distinguish
group errors and systematic errors. About the values ygat(f) and @gac(£), we
will define the so called confidence intervals I, and I,, the necessity of which
is due to the statistical nature of our computations, whose certainty is not
100%. Therefore, we only can say that the real values of parameters lie with
a certain probability in a neighborhood of the values ¢ga¢ and ysiac We have
found. The construction of confidence intervals is given in Chapter 5, and in
Chapter 6 we expose the results concerning the Almagest.

We applied the above scheme to each of the seven domains of the sky, and
found the values of systematic errors as well as the values of “residual” mean
square latitudinal deviations; as a result, we found out that the domains A4
and Zod A are measured best (see Chapter 6 and Table 2.3), which, by the
way, contain a majority of named stars of the Almagest. We found out also
(see Chapter 6) that after the systematic error is compensated for, more than
half of the stars in the domain A have the latitudinal deviation within 10; for
Zod Athe rate of such stars is still higher, 63.7%. Thus, the claimed accuracy
of the catalog (10) acquires confirmation for the well-measured part of the sky.

The next question that arises is the one on the nature of the parameters ysa
and ¢, namely, whether their values coincide with the real group errors for
all stars (or, say, for the domain A). The fact is that individual constellations
may have different group errors, the mean of which is the value we have
found. We have considered all zodiacal constellations and neighborhoods of
most named stars to see that the value y2?¢ 4 ~ yA is equal to the group

stat
errors at least for all constellations in 4. In other words, y2¢ 4is to be treated
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for the statement that an armillary sphere was used for observations for the

Almagest (see Chapter 6)

5 Compensation for the systematic error improved the accuracy of the
catalog (in Zod A, from 17" 7 to 12’ 6), which enhanced the possibilities of

dating
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As we have already mentioned, dating requires considering well-measured
fast stars. We already know that the claimed accuracy of the catalog of the
Almagest is really reached for a considerable part of the stars in the catalog. Are
there any stars for which the accuracy is reached for sure?

Usually, measuring stellar positions, the observer uses a system of reference
points (stars)3>. The reference stars were used by all ancient and medieval
astronomers and are used in modern astronomy. For example, Tycho Brahe
based his observations on a system of 21 reference stars**. Modern system of
reference points involves several thousands stars (described in the so-called
fundamental catalogs; see, for example, the catalog F K4%°). We can derive
from the structure of the catalog of the Almagest that Regulus and Spica
were used as reference points: special sections of the Almagest are devoted
to measuring their positions.

We propose the hypothesis that if the claimed accuracy is confirmed, then
the accuracy is attained on the set of famous stars in the catalog. 1t seems natural
to consider as “famous” the named stars, that is, the ones that have proper
names in the catalog. There are twelve such stars, and they really form a very
convenient frame in the visible part of the sky. All these stars are bright and
are easily distinguishable among nearby stars. What is important, some of
them have high velocities of proper motion (Arcturus, Procyon, and Sirius),
and some others also move notably in the celestial sphere (Regulus, Capella,
Antares, and Aquila).

We excluded at once from our further treatment two of the twelve stars,
Canopus and Vindemiatrix. Refraction distorted greatly the coordinates of
Canopus, so this star is an outlie; as for Vindemiatrix, Ptolemy’s original
coordinates of this star are simply unknown (see Chapter 2). Two more stars,
Sirius and Aquila, were excluded because the systematic errors for their close
environment differs from the one for the environments of other stars (as
follows from our analysis), but we cannot determine these errors. Thus, our
dating is based on eight named stars.

6. The above hypothesis implies the statement that at the year of compila-
tion of the catalog ¢ 4, latitudinal deviation of all the eight stars was below 10'.

On the other hand, we know that in the year ¢4 the component y of the
systematic error of the catalog lies in the confidence interval I, , that contains
the value yqat(24). Hence a natural dating procedure ensues.

Let us consider, at some fixed ¢, the confidence interval I, ysa(f) and
distinguish its subset S; of all values of y such that after the compensation
for the systematic error y in the component, the latitudinal deviations of all
the eight named stars do not exceed 10’ — see Figure 3.16. Of course, for
some values of ¢ the set S, is empty; let us find all values of t for which the
set S, is not empty. The values of ¢ thus found form the interval of admissible
dates for the catalog, because it contains exactly those values of ¢ at which
the latitudes of all the eight stars could be measured with the accuracy 10'.
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Figure 3.16. Statistical dating procedure Intersection of the confidence zone with the
domain where the minimax latitudinal error does not exceed 10’ The bold interval in the
time axis 1s the resulting interval of admissible dates

We note by 7 and ¢ the lower and the upper boundaries of the interval. We
call this procedure statistical, because it is based on the magnitudes ygat(24),
found from statistical considerations. A detailed description of this approach
1s exposed in Chapter 7, where we also present the results of apphcation to
the catalog of the Almagest. The resulting dating interval has the lower bound
600 AD and the upper bound 1300 AD. Although it is 700 years long (because
of low accuracy of the Almagest), this interval is far from the date traditionally
attributed to the Almagest.

7. The confidence intervals used in the statistical approach depend on an
arbitrarily fixed parameter, the confidence level (the probability with which the
results are true). Therefore, generally speaking, we could discuss the depen-
dence of the interval on the confidence level. Similarly, the conjecture that
the group error for the eight stars is equal to the systematic error for Zod A
is of statistical nature, hence may be false with some probability. Therefore,
the question arises: How can the resulting interval expand if we alter the con-
fidence level? It is supposed to give a “geometrical” answer to this question.
Let us again fix a moment of time ¢ as a “candidate” for the date. Let us find
the set D, of all values of y whose turn through the true ecliptic of the year ¢
renders the latitudinal deviations of the eight named stars less than or equal
to 10’ (see Figure 3.17). Clearly, D, O §; for all . Hence, this approach
gives all possible values of ¢ at which it is possible to turn the ecliptic so that
the latitudes of all the eight named stars differ from their values given in the
Almagest by less than 10’. It is far from obvious that the ensuing “maximum
possible” interval coincides with the one obtained from the statistical procedure
(see Chapter 7).

In Chapter 7 we also show stabuity of the dating procedure with respect
to variation of the starting assumptions (the claimed accuracy and nonlinear
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Figure 3.17. Geometric dating procedure The projection of the domain of values of pa-
rameters where minimax latitudinal deviation does not exceed 10’ on the time axis i1s the
resulting interval of admissible dates (bold interval in the time axis)

distortions of observational instruments). The method has been tested on
artificially created catalogs and on several reliably dated catalogs. The results
of the testing are exposed in Chapter 9.

8. Thus, the following steps are to be done to come to the date of the
catalog;:

1) Reveal the doubtfully identified stars in the catalog and exclude these
stars from further treatment. Also, find and exclude the stars whose coordi-
nates are given in the catalog with very large errors( the outlies).

2) Find and compensate for systematic errors of the catalog on the whole
or of large parts of it. This improves the accuracy of the catalog.

3) Confirm (or refute) the claim of the compiler that the accuracy of the
catalog is 10’ by finding sufficiently many stars that have latitudinal deviations
below 1/ (after compensation for the group error).

If the claimed accuracy is not confirmed, we should consider as such the
so-called record accuracy, that is, the one to which about 50% of the stars are
measured.

4) Determine the informative kernel of the catalog, the set of stars at which
the claimed accuracy is surely attained.

5) Determine the dating interval as the set of all moments of time at which
the latitudinal deviations of stars in the informative kernel do not exceed the
claimed accuracy of the catalog (after compensation for the “statistical” or
“geometrical” group error).

We realize these steps in Chapters 4-7.
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Dating Catalogs




Chapter 4
Who is Who?

1. Preliminary remarks

We have already remarked that the solution of the dating problem may
be affected by the chosen identification of stars in the Almagest with stars in
modern catalogs. The identification problem is not trivial and is not uniquely
solved in all cases. Recall that the catalog of the Almagest comprises 1025
stars, divided into constellations and informatas. Clearly, this partition is
rather arbitrary. Only twelve stars have proper names (Arcturus, Aquila,
Antares, Vindemiatrix, Aselli, Procyon, Regulus, Spica, Vega (Lyra), Capella,
Canopus, Sirius (in fact, the compiler uses the word Canis instead of Sirius)).
The rest of the stars have no names and are endowed with descriptions like
“the star in the middle of the neck”, “the star on the end of the tail”, “the
brighter of the two stars in the left knee”, etc. Of course, such descriptions are
insufficient for a firm identification of the star described with a star in a modern
catalog. Many researchers of the Almagest carried out the identification based
on comparison of stellar positions given in the Almagest with the positions
of now known stars; some results may be found in the work of Peters and
Knobel 22, where a modern star is assigned to each star in the Almagest. The
work also contains a table of variants of identification suggested by various
researchers. The identifiers believed in the hypothesis that the catalog had
been compiled about the 1st century AD, and in some cases this influenced
the identification. The fact is that some stars that have high velocity of proper
motion, alter their position with time, approaching positions of various stars

79
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in the Almagest in various epochs. Such stars should not be used in dating
the catalog, since the date they imply depends on the particular identification,
which in its turn depends on the presupposed date. Furthermore, some fast
stars may have no companion in the Almagest, because most fast stars are
faint (fourth to sixth star magnitude), and not all faint stars are reflected in
the Almagest. We also cannot exclude the situation when more than one star
matches a description given in the Almagest. We need to detect all such cases
to avoid basing our dating procedure on ambiguities.

We have never had doubts in thoroughness of the identification carried
out in Ref. 22 (confirmed by our computation). What we mean here is the
mistakes generated by the presupposed attributing of the catalog to the 1st
century AD. In order to exclude all doubts, we have carried out the process
of identifying fast stars anew.

2. The method for identification

Aswe have noted, the question who is who? is essential mainly for fast stars,
most of which are faint. The identification of named and bright stars carried
out in Ref. 22 raises no doubts. The faster a star moves, the more accurate is
the date for the catalog it provides (of course, if the star is identified exactly
and firmly with a star in the catalog). We took for identification 82 fast stars
in the modern catalog?' (those that have velocity at least 0”5 per year in at
least one of the coordinates in the equatorial coordinate system of 1900 AD).
The list of such stars is in Table Ap. 1 in the Appendix, where we also give
the most important characteristics of the stars: their equatorial coordinates
in 1900 (+ = 0 in our notation) and the velocities of proper motion. Using
these data and the formulas for passage to ecliptic coordinates (see Chapter 1)
and to account for proper motion, we find the ecliptic coordinates L;(¢) and
B;(¢) of the ith star in the year # (1 < i < 82). For each of the 82 fast
“modern” stars we consider its e-neighborhood (that is, the circle of radius
¢) in the celestial sphere (see Figure 4.1). Further, for a fixed ¢ (we carry
out the computation for all values of ¢ in the interval from 0 to 30, which
corresponds to the temporal interval 1100 BC-1900 AD) we compute the
angular distance £(A, i, t) between the coordinates (/ 4, b4) of the star 4 in
the catalog of the Almagest and the coordinates (L;(¢), B;(¢)) of the ith “fast
modern” star computed for the moment ¢. If £(A, i, ¢) < ¢, then we conclude
that at the date ¢, the star A4 of the Almagest identifies with the ith fast star of
the modern catalog. Thus, the identification occurs when the e-neighborhood
of the ith star captures a star from the Almagest in a temporal interval [z,, t*].
Of course, it may happen that more than one star of the Almagest gets into
the e-neighborhood of a modern star, either simultaneously or at different
moments of time. Also, it may occur that no position of a star of the Almagest
ever gets into the e-neighborhood.
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Figure 4.1. Identification of the stars in the Aimagest with the stars of the real sky. The
capture of a star of the Aimagest by the ¢-neighborhood of trajectory of true motion of a real
star.

It is obvious from the above description that the method is rather rough; in
particular, we should choose the radius € several times as large as the accuracy
of the catalog under study, to be sure of reliability of the identification. As
we will see, the ensuing identification is practically independent of the choice
of ¢, which confirms the stability of the method.

3. The resulting identification of “modern” stars with the stars
in the Aimagest

The accuracy claimed by the compiler of the catalog of the Almagest is
10’ (separately in latitudes and in longitudes). This means that the (claimed)
accuracy in angular distances is about 14’ (+/2 times the accuracy of mea-
surement of each coordinate). However, the claimed accuracy, generally
speaking, is the record accuracy, only reached at the stars measured best (say,
the named stars); as for the real accuracy, it may be several times worse. A
detailed discussion of accuracy problems is presented in the next two chap-
ters. Here we merely choose ¢ a few times as large as the claimed accuracy
14’; namely, we took the values ¢ = 025, ¢ = 1°, ¢ = 1?5 and ¢ = 2°. In
Table 4.1 we expose the results of identification of fast stars in the temporal
interval 0 < ¢ < 30 (1100 BC-1900 AD). Of the 82 fast stars in Table Ap. 2,
we only give here the data for those stars whose e-neighborhoods capture at
least one star of the Almagest at some values of ¢ and ¢. Each line of the table
exposes a pair of a “fast modern” star, whose number is given in Ref. 21, and
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Table 4.1
&=
Number in Ref. 21 Baily’s number 0°5  1°0 1°5 200
21 189 [20,30] [0,30] [0,30] [0,30]
219 180 — [030} [0,30] [0,30]
321 185 —  [627] [0,30] [0,30]
509 723 [430] [0,30] [0,30] [0,30]
660 360 [8,30] [8,30] [8,30] [8,30]
361 [0,7] [0,7] [0,7] [0,7]

753 716 —  [10,30] [2,30] [0,30]
937 196 [27,30] [0,30] [0,30] [0,30]
1136 783 [0,13] [0,30] [0,30] [0,30]

1325 778 [29,30] [29,30] [29,30] [29,30]

779 [19,25] [14,28] [12,28] [12,28]
780 —  [08] [0,11]  [0,11]
1614 775 — —  [0,30] [0,30]
2491 818 [8,30] [0,30] [0,30] [0,30]
1943 848 [0,17}  [0,30] [0,30]  [0,30]
2990 425 [0,30] [0,30] [0,30] [0,30]
2998 882 [0,30] [0,30] [0,30] [0,30]
4375 32 [0,3] [0,30] [0,30] [0,30]
4414 486 [0,30] [0,30] [0,30] [0,30]
4540 501 — [14,30] [0,30] [0,30]
4657 732 —_ — [030] [030]
5019 527 (8,30] [0,30] [0,30] [0,30]
5188 935 —_ —  [0,30] [0,30]
5288 940 — [0,21] [0,30] [0,30]
5340 110 [513] [0,25] [0,30] [0,30]
5460 969 — — — [0,30]
5699 979 [0,25] [0,30] [0,30] [0,30]
5933 265 —  [830] [030] [0,30]
6241 557 [0,30] [0,30] [0,30] [0,30]
6401 247 {17,30] {0,30] [0,30] [0,30]
6623 125 — [0,30] [0,30] [0,30]
6752 261 — [430] [030] [0,30]
6869 279 [0,28] [0,30] [0,30] [0,30]
7957 79 — [0,22] [0,30] [0,30]

8085 169 — —  [22,30] [20,30]

8697 327 — — [07] [0,7]

328 [28,30] [8,30] [8,30] [8,30]
8775 317 [0,30]  [0,30] [0,30] [0,30]
8969 678 [0,30] [0,30] [0,30] [0,30]

a star of the Almagest, whose Baily number is given. We write “—” if the
g-neighborhood of the star in the first column never captures the star in the
second column at the given ¢. For example, at ¢ = 0°5, the e-neighborhood
of the star 1325 in Ref. 21 never captures the star with Baily’s number 780.
If the star of Ref. 21 identifies with a single star in the Almagest, we write
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in the line the Baily number of this star and the temporal intervals in which
the identification occurs (for various values of ¢). For example, the star 21
in Ref. 21 (11 B Cas) identifies with the star number 189 at 28 < ¢t < 30
for e = 0°5 and at 0 < ¢t < 30 for the rest of the values of . If the star
i in the first column identifies with several stars, we indicate them all, and
in the corresponding lines write down the intervals in which the star of the
Almagest is nearer to the star i than the rest. For example, the star 1325 in
Ref. 21 (40 o? Eri) identifies in various temporal intervals with the stars of the
Almagest having Baily numbers 778, 779 and 780. The column corresponding
to ¢ = 1°5 tells that at 0 < ¢ < 10 the star of the Almagest nearest to the
star 1325 is Baily’s 780 (although, say, at ¢ = 10 the distance between 1325 of
Ref. 21 and Baily’s 779 is also less than 1°5).

The sense of the above calculations is the following. Suppose the catalog
was compiled in the year . Then the most natural candidate for being the
star that has Baily number A is the “modern” star that identifies with A in
Table 4.1.

It is obvious from Table 4.1 that the results of the identification are almost
insensitive to the choice of ¢. In fact, this choice is fairly arbitrary and is
due to informal considerations. First, £ should be of the same order with
the accuracy of the catalog (otherwise we will have to consider identifications
that have nothing in common with reality). Second, it should be sufficiently
large in order that we have any identifications at all and that the errors of the
catalog could not affect the result essentially. Third, £ should not be so large
as to make the results of identifications ambiguous.

It follows from Table 4.1 that we can identify 36 of the 82 fast stars. The
ensuing identifications do not contradict the ones in Ref. 22; moreover, most
of them coincide with the known ones. A dramatic exception is the star 1325,
0* Eri. In Ref. 22 the star is marked as doubtfully identified. We have come
to several possible identifications, depending on the date of compilation of
the catalog. Taking into account its faintness, we should treat the stars with
Baily’s numbers 778, 779 and 780 as doubtfully identified and exclude them
from further consideration.

The results represented in Table 4.1 also show that reidentifications are
exceptions rather than the rule, which may be explained by slowness of the
overwhelming majority of stars, as well as by the sparseness of the stars of the
Almagest in the celestial sphere. In our further study, we confine ourselves
to the stars that have no ambiguities in identification. Therefore we will use
their Baily numbers, not referring to their numbers in Ref. 21. In some cases
we will also use proper names of the stars.

Although Table 4.1 demonstrates a relation between the “accuracy of iden-
tification” & and temporal intervals, no reliable information about the date
may be elicited hereof. The reasons for that are discussed in details in Chap-
ter 3; nevertheless, we will repeat them briefly here. If we delete from the
list of all fast stars the ambiguously identifiable ones and choose ¢ as the
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minimum value at which all temporal intervals meet, this value might be
treated as the real accuracy of measurement of fast stars, and the point where
the intervals first meet as the true date of compilation of the catalog. How-
ever, as follows from Table 4.1, this value of ¢ is too large: even the fastest
stars cover such distances in thousands of years. The ensuing date turns out
to be extremely unstable; in particular, it depends heavily on the collection of
stars it is based on — an addition or deletion of a single star may bring about
a large variation of the date. This is why we have required classification of

stars from the point of view of accuracy of measurement as a necessary step
of the dating procedure.

4. Conclusions

1. An overwhelming majority of stars in the catalog of the Almagest have
been identified correctly in previous studies.?

2. 36 of 82 fast stars in the modern catalog?! admit identification with stars
in the Almagest (see Table 4.1).

3. The following stars in Table 4.1 admit various identifications:

a) 0? Eri (40 0? Eri, 1325) may be identified with the star 778 of the Almagest
in the interval 1100 BC-800 BC, with the star 779 of the Almagest in the
interval 700 BC-800 AD, and with the star 780 of the Almagest in the interval
900 AD-1900 AD.

b) The star 660 of Ref. 21 may be identified with the star 361 of the Almagest
in the interval 1100 BC-1800 AD, and with the star 360 of the Almagest in the
interval 1800 AD-1900 AD.

¢) The star 8697 of Ref. 21 may be identified with the star 327 of the Almagest
in the interval 1200 AD-1900 AD and with the star 328 of the Almagest in the
interval 1100 BC-1200 AD.



Chapter 5

Analysis

of Systematic Errors

in Stellar Configurations

1. Classification of latitudinal errors

From this chapter on, we assume that we deal with a catalog all of whose
stars admit a well-defined identification with the stars in a modern catalog.
The variable i ranges over the numbers of stars in the catalog; /, and b, stand
for the ecliptic longitude and latitude of the ith star in the catalog, and L, (t)
and B, (¢) for the true ecliptic longitude and latitude of the star in the year ¢.
Recall that we count the time ¢ in centuries from 1900 to the past; thus,
t = 3.15 corresponds to the year 1900 — 3.15 - 100 = 1585 (AD), and ¢t = 22.0
to the year 1900 — 22.0 - 100 = —300 ( = 300 BC). Let ¢ be the (unknown)
year of compilation of the Almagest. Denote by LA and B the true longitude
and latitude of the ith star in the year ¢ 4 L;" = L,(t4), B,A = B, (t4), and let
AB(t) = B,(t) — b,(t) be the latitudinal deviation (for the year t); we will use
A B, (t) as a measure of the error in the latitude of the ith star in the catalog
under the condition that the catalog was compiled in the year t. Naturally,
AB,(t4) = ABAis the true error in latitude.

We confine ourselves to considering latitudinal errors, for the reasons ex-
plained in Chapter 3.

We classify the errors occurring in the catalog into four types: the outlies,
the group errors, the systematic errors, and the random errors. We call outlies the
gross errors in coordinates; they are usually easy to detect. We exclude such
stars from our further consideration. Group errors are the ones introduced in
the coordinates of a group of stars in a similar way. A typical example is the

85
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error introduced by an erroneous determination of position of the ecliptic in
the celestial sphere. The group errors that are common for the whole catalog,
or in a large part of the catalog, we call systematic. The systematic errors may
be detected and compensated for. Random errors are the ones that admit
no compensation in principle (for example, random instrumental errors that
have no regular component).

Note that we only classify errors, but not their causes. In particular, the outlies
may be caused by mistakes of copyists, refraction, etc. The group errors may
be introduced by faulty instruments, astrometric errors, etc. Similarly, the
causes of random errors are various; it is apparently impossible to enlist, not
to say detect all the causes. We need not do that; the approach we propose
uses the values of the errors, but not their causes.

A lot of preliminary work for detecting outlies has been done in several
well-known investigations of the Almagest (see, for example, Ref. 22), where
the values of latitudinal deviations are given for all stars). We classified as
outlies the stars whose latitudinal deviations exceed 1°. Note by the way, that
a variation of this critical level practically does not affect our conclusions,
because the outlies are relatively few. Therefore, weeding out the outlies
constitutes no difficult problem, and in the sequel we assume that no outlies
are left. The aim of the methods we present below is to compensate for group
errors (thus improving the accuracy of the catalog) and to try to date the
catalog with only the random errors left.

2. Parametrization of group and systematic errors

Consider a collection of stars (a constellation or a group of constellations).
We define the group error in coordinates (latitudes) of these stars as the error
introduced by a translation along the celestial sphere of the collection of stars
as a whole. Consequently, any subcollection of the configuration is translated in
the celestial sphere as a whole, by the same angle as the whole collection (we stress
this, because we will use this in the sequel). A translation along the sphere
has three degrees of freedom, so three parameters are needed to determine
it. Let us introduce the three parameters.

Figure 5.1 shows the picture. In the celestial sphere with the center O,
the true position of the ecliptic in the year ¢ 4 is depicted, in which the spring
and the fall equinoctial points Q and R are marked. The point E depicts
the position of a star. As we have noted, the group errors in latitudes (for
a fixed group of stars) may be considered as a consequence of an incorrect
determination of the pole of the ecliptic; that is, some point P4 was assumed
to be the pole instead of the point P. A perturbed ecliptic corresponds to
this choice of P4, which we call the ecliptic of the catalog. Its position may be
defined in terms of two parameters, the angle y between the lines OP and
O P4 (or, which is the same, the angle between the planes of the true ecliptic
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Figure 5.1. Parameters that determine systematic error (the error in the position of the
ecliptic of the catalog)

and of the ecliptic of the catalog) and the angle ¢ between the equinoctial
axis RQ and the line C D where the plane of the true ecliptic and the plane
of the ecliptic of the catalog intersect. This parametrization is convenient for
calculations.

We will also sometimes use the angle 8, defined as follows (see Figure 5.1).
The turn of the ecliptic may be decomposed into two turns, the turn about
the equinoctial axis RQ through the angle y and the turn about the axis that
lies in the ecliptic plane perpendicular to RQ through the angle 8. Thus, B is
the angle subtended by the arc Q 40 of the large circle through the pole P4
and Q. The astronomic sense of the point Q 4 is quite obvious: it is the spring
equinoctial point of the catalog. Clearly, the values of y and ¢ determine
uniquely the values of y and 8 and vice versa. The particular relation between
them may be found from the right spherical triangle C O 40 (the angle at the

vertex Q 4 is right, the angle at the vertex C is y, and the arc CQ subtends the
angle B); we get

(1) sinf =siny -sing
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A as?

+Y ¢-=

Figure 5.2. Systematic latitudinal deviation dependence of longitude.

The third degree of freedom is the turn of the sphere about the axis P4P)
(see Figure 5.1); it does not affect latitudes, so we do not consider it in our
analysis. (Of course, any other parameters that determine turns of the sphere
may be chosen.)

Let us now look how the systematic error determined by y and ¢ distorts
the coordinates of the ith star. The true longitude L/ and latitude B/ are
equal, respectively, to the lengths of the arcs EE’ and QFE’ (counted clockwise
if looked at from the pole P). The distorted latitude b, and longitude /, are
equal, respectively, to the lengths of the arcs EE 4 and Q4E 4. Note that the
latitudes of the stars whose true latitude is more than the latitude of D and less
than the latitude of C (see Figure 5.1) decrease, and the latitudes of the rest
of the stars increase. Strictly speaking, this is not true for all stars, namely,
it is wrong for the stars within y from the poles P and P’; because of the
smallness of distortions introduced by the compiler of the catalog (as we will
see, y is about 20'), there are practically no such stars.

Taking into account the smallness of y, we may use the following approxi-
mate expression for the latitudinal deviation:

(2) ABA = ysin(L + ¢)

Thus, the systematic error in latitudes may be depicted as the sine curve in
Figure 5.2, which it is worthwhile to compare with the Peters’ sine curve (see
Ref. 22 or Figure 2.11).

The error of the formula (2) does not exceed 1’ for the stars with | 4] < 80°.
This error is immaterial for us, so below we will treat the formula as exact (to
justify this, we exclude from further considerations all stars whose latitudes
exceed 80°). Further in this chapter, we will speak of the systematic error,
because the methods we expose work under the assumption that a sufficiently
large collection of stars is considered. A check of the coincidence of the
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resulting systematic error with the group errors of individual constellations is
a separate problem, which we deal with in the next chapter.

If we knew the year ¢4 when the catalog was compiled, we would be able
to determine the parameters y and ¢ from the following procedure:

1) Find the true coordinates B/ and L of all star in the collection.
2) Find the parameters y and ¢ so that

3) o?(y, ) = min
where
4) oX(y,9) =Y (B} - b, —ysin(L + 9))?

4

Suppose for a moment that the catalog has no errors but systematic. Then
(3) reduces to

(5) 0_2(.}/, (p) =0

However, we in fact do not know the year of compilation of the catalog, so
we have to compute the systematic errors for all values of ¢ in the interval
0 <t < 25. Namely, for each ¢ we first find the position of the true ecliptic
and the equinoctial axis. Then, as in Figure 5.1, we introduce parameters
y =y (), ¢ = ¢(t) and B = B(¢t) that determine the position of the ecliptic of
the catalog in relation to the true ecliptic of the year ¢. The values y(¢) and
¢(t) may be found from the condition

(6) a?(y(t), p(1), 1) - min
where
(7 o> (v, 9, 1) = ) _(AB,(t) — y sin(L,(t) + ¢))*

Again, if the catalog contained no errors but systematic, the relation (6) would
reduce to the equation

() oy, 0,) =0

which would have solutions at any ¢. So, it is impossible to find the date ¢4
from this equation; what we can find is the systematic error as a function
of t. Naturally, the systematic error would vary because of oscillations of the
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ecliptic. That is why we speak of finding the systematic error of the catalog,
but not of dating it.

Since the real catalog contains also random errors, the deviations B, (¢) — b,
are random variables the values of which concentrate about the sine curve in
Figure 5.2. If we assume that the errors in the catalog, except systematic, are
random, say, normally distributed, then the problem of finding y (¢) and ¢(¢)
reduces to the problem of finding parameters of regression, solving which we
find statistical estimates for y (¢) and ¢(2).

3. Method of least squares for the parameters y and ¢
In this section, we will find the solution y (¢) and ¢(¢) for the minimization

problem (2.6)—(2.7). Since below we will consider various collections of stars,
it is convenient to use normed magnitudes,

(1) o3y, 9. 1) = % éaz(% . 1)
1 N

2) (1) = ; AB,(t) - sin L, ()
1 N

3) cop(t) = N ; AB,(t) -cos L,(t)
1 N

(4) (0 = % ‘;1 sin L, (t)
1 N

(5) c () = 5 ; cos? L, (t)
1 N

(6) dy= 5 ; sin L, (¢) cos L, (¢)

where N is the number of stars in the collection in question.
Note that all these magnitudes may be found for any year ¢ from modern
coordinates of stars and the coordinates of stars given in the catalog.
Obviously, the minimization problem (2.6) is equivalent to

(7) 0(,7'()/, @, t) > min

in the sense that the parameters y (¢) and ¢(¢#) determined by (7) are the same
as the ones determined by (2.6).
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Since, as we noted, the problem (7) makes sense only for large collections
of stars, and since we will only study statistical properties of its solution, we
will denote the values that satisfy (7) by ystai(#) and @gac (2).

The value

(8) omin(t) = 00(Vstat(t), Pstar(t))

has an obvious physical sense: it is the residual mean square latitudinal devi-
ation (over the collection of stars, at the moment ¢) that we obtain after com-
pensation for the systematic error Yga(t), @star(t). As we will see below, omn (2)
in fact does not depend on t (for groups consisting of fixed stars); therefore we
will use the denotation o, . Note that with the group error not compensated
for, the mean square latitudinal deviation at the moment ¢ is equal to

N

1
©) O =00(0,0,6) = | =3 (AB()?

=1
This magnitude, generally speaking, depends on ¢. Thus, the difference
(10) Ao (t) = oype(t) — omn(t)

estimates the effect of compensation for the systematic error determined by
Vstar (1) and @srae(2).

Further, as we determine yg,(£) and @ga¢(2), we will assume ¢ fixed, so we
will omit ¢ in the expressions (that is, we write L, instead of L,(t), s, instead
of sp(t), etc.).

In order to find minimum in the relation (7), let us find partial derivatives
of ¢ (y, ¢, t) with respect to y and ¢ and equate them to zero. Applying

(11) sin(L, + ¢) = sin L, cos ¢ + cos L, sin ¢
we come to the equations

SpCOS @ + Cp SN @

(12)

= y (s, cos? ¢ + 2d cos ¢ sin ¢ + ¢, sin’ p)

— CpCOS @ + Sp Sin @
(13) ) ] .
= y(—dcos” ¢ + (s, — cp) cOs @ sin ¢ + d sin” @)
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Dividing (12) by (13), we get

(13) sp+cpcosptang s +2dtang +crtan @

—Cp + Sptan ¢ T —d+ (52 —co)tang + dtan ¢
whence
(15) (1 + tan? @)(cps2 — spd) + (1 + tan® @) tan p(cpd — spc2) =0

Solving (15), we find

spd — CpSy

16 =
(16) tan @sat cd — 5502

Since the relation (16) determines ¢ga, the optimal value of yg ., may be
found, say, from (12):

Sb COS Pstar + Cp SIN Pgiat
3 )
§2 COS? Qgiar + 2d COS Pstar SIN Ygtar + €2 SIN” Pgpa

Vstat =

(17)

cpd? — 2spcpd + Spcy + CbS2
d? — $2C2

Thus, (16) and (17) solve the problem of determination of g, and ysac by the
method of least squares. It is useful to investigate the sensitivity of this prob-
lem. Let us consider the following second partial derivatives of a(y, @, t):

3%02(y, ¢, 1)
(18) ap = ay2<p
Y Y =Vstat, P=@stat
(19) ap = Poly.0.)
3)/ a(p Y =Vstat, P=@stat
320%(y, @, 1)
20 =
( ) ax a¢2

Y =Vstat, P=@stat
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Y

Figure 5.3. Level curves of mean square error o (y, ¢, t) at fixed ¢.

Taking into account (12), (13), (16) and (17), it is easy to obtain the following
expressions for the second derivatives:

2 . . 2
a11 = 2(52 COS” Pstar + 2d COS Pstat SIN Psrar + €2 SIN” Pgtar)

(21) ) .
= (5b COS @star + Cp SIN Pspar)
Vstat
(22) a12 = 2(Cp COS Pstar — Sb SIN Pstar)
(23) a2 = 2¥stat(52 SIN @srar — 2d SiN Pgpar COS Psrar + €2 cos’ Pstat)

In order to estimate deviation of the mean square error o (y, ¢, ) under a
variation of y and ¢ near ¢ga and ygat, €xpand o (y, ¢, t) in a neighborhood
of the point Ysear (2), @stat(£):

(24)
oy, 9,t) =0k, +an(®)(y — ysa(t))?

+2a3, (¥ — Vstat (1)) (@ — @star(®)) + a2 () (@ — Psear(t))?

in (24) we neglected summands of the third and higher degrees with respect
to small differences y — ystat and ¢ — @gat.

The expansion (24) enables us to estimate sensitivity of the mean square
error o(y, ¢,t) to variations of y and ¢, because the coefficients ay;, a;;
and a; may be found with the help of (21)—(23) from modern coordinates
of stars and the coordinates contained in the Almagest. It follows from the
relation (24) that the level lines of the mean square error are ellipses in the
coordinate plane (y, ¢) with the center at (ystar, @stat) (Figure 5.3). The value
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of o (y, ¢, t) at this point is oy, . The directions and the lengths of the axes
may be found from standard formulas of analytic geometry; namely, the slope
o of one of the axes is determined by

2
(25) tan20 = — 212

a;p —ax

and the other axis is perpendicular to the first; the ratio of the axes is equal
to the ratio of roots of the quadratic equation

A% — Ma1; + an) + (anaxn — at,) =0

4. Variation of y,,; and ¢, with the a priori date

In the previous section, we fixed the time ¢; here we will consider variation
of ysar and @ga; With variation of time.

Of course, the behavior of the parameters with variation of ¢ could be
obtained from formulas of Section 3, which include L,(t) and B,(¢) (due to
which yga: and g vary); the variation of L, (¢) and B, (¢) with time has been
studied well (see Chapter 1). However, this approach is fairly cumbersome,
and in fact is used in our computer calculation of g (f) and @ (t) (see
Chapter 6). Here we confine ourselves to a qualitative analysis of behavior of
the two functions.

Let us consider the fixed celestial sphere with fixed stars in it. Thus, we go
back to Ptolemaic views, although for simplicity of reasoning and calculations.
The fact is that the stars that have a notable proper motion (several minutes
of arc in the 2.5 thousand years we are interested in) are comparatively few,
so their existence does not affect much the general picture. In Figure 5.4 we
depict the celestial sphere and the true ecliptic in the year ¢4 (it is useful to
compare Figure 5.4 with Figure 5.1). The compiler of the catalog determined
the position of the ecliptic inexactly, so the pole P4of the ecliptic of the catalog
is different from the true pole P(¢) of the year ¢. Let QP(t4) R be the arc of
the large circle through P(t4) and the equinoctial points Q 4 and R4, and let
D(t4) D'(t4) be the large circle through P(f) perpendicular to QP(t4)R. If
we knew the year ¢, the method of least squares applied as in Section 3 would
produce the parameters y and ¢ that determine the position of the ecliptic
of the catalog in relation to the true ecliptic of the year ¢. It is obvious from
Figure 5.4 that the two angles also determine the position of P(t4) in relation
to P4, namely, y is the angle subtended by the arc P(¢) 4P, and ¢ is the angle
P4P(t4)D'(t,4). As we noted in Chapter 1, the position of the ecliptic varies
with time, so at a moment ¢ distinct from ¢4, the (true) pole is at the point
P(¢), distinct from P(t,4). The trajectory of the variation of the pole of the
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Figure 5.4. Geometry of the angles ¢ and y in the celestial sphere

ecliptic with time is depicted in Figure 5.4 by the dashed line through P(¢) and
P(t4). In order to bring the true ecliptic of the year ¢ into coincidence with
the ecliptic of the catalog, we need to bring P4 mnto coincidence with P(¢).
The length of the arc P(¢) P4 is equal to ygat(?). As for the position of the axis
of the turn that generates coincidence, it may be parametrized by the angle
P4P(t)D'(t) where D(t) D' (¢) is the arc “parallel” to the arc D(t) D'(¢).

In order to see the qualitative behavior of the functions ysa (¢) and @gar (£),
let us consider a “flat” picture where we only depict the process of variation of
poles of the ecliptic; this approach is acceptable because the variation surely
does not exceed 1°. Transfer the picture near the North pole of the ecliptic
from Figure 5.4 to Figure 5.5.

Thus, the true pole of the ecliptic shifts with time, due to oscillation of
the ecliptic (see Figure 5.5). Within the interval of time we consider, the
variation is about 25', so we may depict it as a rectilinear segment (the dashed
line in Figure 5.5). The motion of the pole of the ecliptic is to a high accuracy
uniform, so the distance between P(t) and P(t,) may be assumed to be equal
to v - (¢t — t4) where v is the velocity of motion of the ecliptic (approximately,
1’ per century). Recall that P, is the point where the compiler of the catalog
placed the pole because of the error in determination of the ecliptic; if the
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D(ty)

S(t) D'(YA)=

Figure 5.5. Trajectory of the true motion of the ecliptic in the celestial sphere due to pre-
cession. Geometrical sense of the parameters y and ¢ dependence on the a priori date.
The point P4 depicts the position of the pole given in the Aimagest.

perpendicular dropped from P4 on the dashed line depicting the motion of
the pole of the ecliptic meets this line at some t* > ¢4 (as shown in Figure 5.5),
then the compiler’s error “renders the catalog older”, because the ecliptic of
the year ¢* is closer to the ecliptic of the catalog; in the opposite case (if
the perpendicular meets the dashed line at t* < t,4), the error “rejuvenates”
the catalog. To give some notion about the real values of the quantities in
question, the distance between the pole of the ecliptic of 1900 AD, P(0) and
of 1 AD, P(19) is about 20'; ysa:(¢) for the Almagest is also approximately this
value.

As we know, ygat(£4) is equal to the length of the arc P(t4) P4, and @giat(2.4)
to the angle P4P(t ) D' (t4). Similarly,

(1) Ystat(!) = P(t) P4

where the bar denotes the (angular) length of the arc. But the angle
P4P(t)D'(t) is not equal to gg4 (2), because by the moment ¢ the equinoctial
axis has displaced by w - (# — t 4) where w is the angular velocity of precession

(about 50” per year; see Chapter 1). This displacement corresponds to the
angle D'(¢) P(¢)S(¢) in Figure 5.5. Thus,

(2) @star(t) = LP4P()S(t)

(£ stands for “angle”); we have also

3) (DOPOSH) =w-(t —ty)



4. VARIATION OF ygat(f) AND ggtat(t) WITH THE A PRIORI DATE 97

In order to avoid cumbersome notation, we put

(4) x(t) = P(t)P(t4)

&) y = P(ty) P(t")

(6) Y(t) = LPAP()D (1)
(7) z = P4P(t")

(8) 8 = LD(ty) P(ty) P(2)

The quantity ysa(¢) may be called the error in determination of the ecliptic
(in the Almagest it is about 20'). The angle § is constant and is equal to the
angle the direction of motion of the pole of the ecliptic makes with the line
D(t ) D'(t4). Clearly,

) Z = Ystar(£4) SIN(S — @stat(24))

(10) Y = Vstat(t4) COS(8 — Pstat (£4))

Since x(t) = v - (t — t4), it readily follows from Figure 5.5 that

(11) yorae = [~ =t +9)2+22]"? =[y2ut)+2yv-(t —t)+v2 (¢ —10?] "

Clearly, the function in the right side of (11) attains its minimum value at
t = t*; if we consider the case when |t — t4] < |t4 — t*|, the function Yy (¢)
is practically linear:

(12) Ystat () =X Vstat(t4) + v cOS(8 — @star(ta))(ta — 1)

The function ¢ (¢) is also easy to determine:

z
(13) Ostat(t) =6+ w - (¢, — t) — arctan (y N t))

Again, if |t 4 — t| < |t4 — t*|, then we may use the linear approximation

v Sin(8 — @star (2.4))
Vstat (ta)

(14) Wstat (1) X Qsear(L4) + [a) + ] (tqg—1)

Of course, the above formulas only give a general view of the behavior of
Ystat(?) and @gai(¢). Figure 5.6 displays the functions obtained from (11)
and (13). Naturally, the particular form of the functions depends upon the
errors made by the compiler of the catalog, that is, on yg,(¢4) and @ (f).
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47aatzn(t)

t
-0 - aund

Figure 5.6. Approximate form of the functions ysat (1) and @sta: (¢)

The relations (11) and (13) also determine the form of the function By (¢);
see (2.1).

Letus now describe the geometrical sense of the above constructions. If we
consider coordinates of a group of stars at the moment ¢, then compensation
for the group error @gar(t), vaar(t) (that is, the turn of the group through the
angle y (¢) about the axis that makes the angle ¢g,(f) with the equinoctial
axis), brings the pole of the catalog P4 into coincidence with the true pole
P(t). Of course, this does not eliminate latitudinal deviations, because the
catalog also contains random errors; their mean is zero, so they do not displace
the pole of the ecliptic (to be precise, displace by a small distance; the more
stars in the group considered, the less is the displacement).

The displacement of P to the point P(t) is uniquely decomposed into the
displacements P4 — P(t4) and P(t4) — P(t). The parameters yga.(t4) and
@stat (£ 4) that parametrize the first of the two displacements may be treated as
the error of the observer, that is, the error the compiler of the catalog had
made in determination of the ecliptic. The second displacement is due to
oscillation of the ecliptic plane; it may be computed from Newcomb’s theory.

It follows also that if we denote by A B, (¢) the latitudinal deviation of the
ith star computed for the moment of time ¢, and by ABY(f) = AB,(t) —
Ystat () Sin(L, (t) 4+ @stat (2)) the latitudinal deviation of the star after compen-
sation for the systematic error, then for the collection of absolutely fixed stars,
the deviations A B,(t) do not vary with t and are due to the random errors made
by the compiler of the catalog in measurement of latitudes. This is not the case
if the collection includes moving stars; their deviations A B, (¢) depend upon ¢.
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Vstat (£1)

Figure 5.7. Finding the values of yga: () and @gac ().

The form of these dependencies is determined by individual random errors, as
well as by directions of proper motion. In particular, in the year ¢ 4 (unknown
to us), A B, (¢) is equal to the individual random error of the stari. It is natural
to expect that if the star moves fast and is well-measured, then |A B, (¢)| attains
its minimum value in a neighborhood of ¢4; the length of the neighborhood
depends on the velocity and the direction of the proper motion, and even for
the fastest stars (say, Arcturus) amounts to hundreds of years.

An important conclusion is that determination of the pole of the ecliptic of
the catalog P4 only requires the values of ysar at two moments of time t, and
t,. Indeed, from the theory of Newcomb (see Chapter 1) it is easy to find
the velocity v of displacement of the pole of the ecliptic. Fix two arbitrary
distinct moments of time #; and ¢, (see Figure 5.7) and find the values yg:(#1)
and ysar(t) from (3.16); draw the line along which the pole of the ecliptic
moves and mark the points # and ;. Choose the scale so that the distance
between the marked points is equal to v - (t; — #;). The position of the pole
of the ecliptic P4 may be found as the intersection of the two circumferences
with the centers at the points ¢, and the radii yga (%), i = 1,2. It is now
obvious from Figure 5.7 how to determine the values ygac(#) and @ga (¢) for
any t. We should note only that the line S’ from which the angle ¢ () is
counted meets the trajectory of the pole of the ecliptic at an angle §(¢), also
determined from Newcomb’s theory. The astronomic sense of the line S§’ is
quite obvious; it is the “rectilined” segment of the large circle of the celestial
sphere that passes through the pole of the ecliptic in the year ¢, P(¢) and is
perpendicular to the large circle through P(¢) and the spring equinoctial point
of the year.

Similarly, the values of @g,:(¢) at two distinct values of ¢ determine the
values of y4tat(¢) and @ga(2) forall t.

However, we will work with the angle y, for it has an obvious sense, the
error in the inclination of the ecliptic to the equator. Note that this inclination
is fixed, say, in an armillary sphere (see Chapter 1), for which, consequently,
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y isan instrumental error. Furthermore, the choice of y will be justified below
from the statistical point of view.

5. Statistical properties of the estimates y,,,, and ¢,

In this section we approach the problem of estimating parameters y and ¢
that determine the systematic error of the catalog as a statistical one. To that
end we assume the following. Suppose that the compiler of the catalog for the
year ¢ 4 had made the systematic error determined by the parameters yg,; and
@stat- Suppose that, moreover, the latitude of each coordinate was affected
by a random perturbation &, (the individual observational error) with zero
mean, that is, E§, = 0. We assume that the random errors £, corresponding
to various stars have the same distribution. Let 62 = E £2 be the variance of
the random variable &2 (strictly speaking, we do not know the value of o2).
Then the latitude given in the catalog may be written in the form

(1) b, = B,(t4) — yasin(L,(tq) + @) + &

Thus, from the statistical point of view the catalog is a sampling of size N of
realizations of the random variables {b}"¥ | of the form (1), use to which we
must find the statistical estimates y 4 and ¢ 4, respectively, of the parameters
y and ¢, and also to estimate the variance o (the mean square error of the
observations). We will restrict the problem and will study the statistical prop-
erties of the estimates ¢ = @yt and ¥ = ygar produced by the least squares
method and given by (3.16) and (3.17); the main attention will be given to
the estimate of y 4, for the reasons explained in the end of the next section.
Let us reduce (1) to the form traditional for regression analysis. The obser-
vational error Ab, = B(t,4) — b, is a random variable whose mean is equal to
yasin(L,(t) + ¢ 4) and whose variance is 02. The curve Y(x) = y4sin(x + ¢ )
is usually called the regression curve.

By our assumption, the deviations Ab, are random, so the estimates g
and @g, that ensue from (3.16) and (3.17) are also random variables. Let
us investigate their statistical properties and their relation with the true (un-
known) values ¢ 4 and y 4.

Let us write g and ygeo in a special form; namely, substitute y 4sin(L, (¢) +
¢4) — & for Ab, in the expressions for s, and ¢,; now (3.16) and (3.17) assume
the form

tan g4+ [(R/N) XV, £(s2 cos L, (t4) — d'sin L, (£4))]
1+ [(R/N) XN, & (casin L, (t4) — d cos L, (t4))]

(2) tan @sar =

(/N T E(sin Li(ta) + tan g 4c05 Ly (1.4))
(52 +2dtang 4+ ca tan? g 4) cOS @ 4

(3) Vstat = VA
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where

4) R= (ya(d® — s1¢c3) cosp) ™

From E &, = 0 follows

(5) E Vstat = Y4

whence the estimate for yg,, is unbiased. As for the variance Dy of the
estimate g, it is given by

o2

(6) D)/ = ) . )
N(s2cos? @4+ 2d cos @ 48in @ 4+ ¢ 8in” @ 4)

If the individual errors &, are normally distributed, then so is the variable yy5;,
and the first two moments (5) and (6) completely determine its characteristics.
In the sequel, we will use this fact for constructing confidence interval for the
value of y4.

The analysis of the estimate ¢4, is a bit more complicated. We will use the
following relation, easily derivable from (2):

tan ggar — tan @ 4

(7) _ (R/N) Zfil & ((s2 + dtang,) cos L, (t4) — (d + c2) sin L, (1))
1+ (R/N) Zfil & (c2sin L, (t,4) — dcos L, (t 1))

and the fact that at large N the second summand in the denominator of the
right side of (7) is small. Indeed, this quantity is a random variable with zero
o 202
Ny2(s2c2 — d?) cos? ¢ 4
normally distributed, then so is the second summand in the denominator of
the right side of (7). It follows that for the catalog of the Almagest, already
at N = 30 the probability that the denominator in the right side of (7) is
negative does not exceed 5-10~3; with the growth of N this probability rapidly
decreases: Psp <2.5-107% Pyy <4-1075, Pygo <3-1077, Py < 8-10713,
Py < 2.5-10718_ It follows from (7) that generally, E tan g, # tangg4,
but it is easy to derive the distribution function F(x) of the random variable
tan gga; — tan ¢ 4 (necessary for finding the confidence interval for ¢ 4), if we
neglect the case that the denominator of (7) is negative, the probability of
which is low:

mean and variance equal to

. If, moreover, &, are

(8 F(x) = P(] tan ggat — tang 4| < x) = P(n; < x)
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where the random variable 7, is of the form

R N
Nx = 33 & ((32 +d(tan g4+ x) cos L, (2 4))
® N :}::1:

— (d + (c2tan g4 + x)) sin L, (14))

Consequently, if the variables &, are normally distributed, then so is n,, with
the mean 0 and the variance

(10) Dy, = ;‘,’2 (c252 — d*)(s2 + 2d(x + tan ¢ 4)%)
Hence,
(11) F(x) = ®(x/y/Dny)
where
(12) ®(x) = L /x exp(—lu?') du
Var ). 2

The above variables ¢g,; and g, are the so-called point estimates for the
unknown parameters ¢ 4 and y 4.

Since we have found the distributions of these variables, we now can in-
vestigate the accuracy of the estimates found. We will estimate the accuracy
in terms of confidence intervals.

In mathematical statistics, the problem of finding confidence intervals
comes from the situation which we will explain in terms of the example of
the estimate of y4. The y4 is a nonrandom (determined) quantity, the er-
ror the compiler made as he created the catalog. Applying the least squares
method, we obtain a random variable yg,:. Of course, we would like to know,
what bounds can we find for y4 given a realization of yg,:. In order that
the bounds be nontrivial, we have to set the confidence level 1 — ¢ where ¢
is the probability of an error that we admit. Since the variable y is normally
distributed with the parameters as in (5) and (6), we have for all x > 0,

(13) P(|Ystat — Y4l < X) = ®(/Dy - x) — &(—/Dy - x)

Find x, from the equation

(14) o(/Dy-x)—P(—y/Dy -x)=1-—¢
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or, equivalently, from the equation

(15) O(—/Dy -x;) = /2

Then the interval

(16) Iy (&) = (Vstat — X, Vstat + X¢)

is the confidence interval for y 4, because

(17) P(|Vstat — val = x:) =€

To find x., we need to use the value of D y, which depends on the unknown
parameters o and @4. As is usually done in mathematical statistics, we
substitute for o2 in (6) the residual variance (see (3.8)):

1 & :
(18) GZ(Ystat, Pstat, La) = N Z(ABz (t4) — Ystar SIN(L, (24) + ‘Pstat))z
1=1

and for ¢ 4 its approximation gg,¢(f4). Since the moment of compilation of
the catalog ¢ 4 is also unknown, we need to do all this for all moments of time ¢,
in order to estimate the conditional systematic error ysa(t), @sar(¢), provided
that the true date of compilation is ¢.

A similar procedure may be applied to finding the confidence interval for
¢ 4 with the confidence level ¢; the resulting interval is

Ye
19) I,(e) = [ - ’
(19) I, Pstat 1 + tan? @ga — Ye tan @geay

Ostat + Ye ]
stat
1 + tan? Pstat + Ve tan Qgat

where y, is the root of the equation
(20) F(ye)— F(=y:)=1-¢

and the distribution function F is as in (11).

6. Conclusions

1. The group error for a star configuration reduces to a displacement of
the configuration as a whole in the celestial sphere. If we are only interested
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in latitudinal deviations, the displacement may be determined in terms of two
parameters, y and ¢ (or y and ).

2. The latitudinal deviations of the catalog may be diminished by com-
pensation for the group errors.

3. If the group errors coincide in a large part of the catalog, then the
common error is called systematic, and may be found by application of a
statistical approach.

Under the condition that the catalog has been compiled in the year ¢, the
values of ¢(¢) and y (¢) may be estimated by the method of least squares; the
resulting estimates @ (¢) and ygae(?) are as in (3.16) and (3.17).

4. The functions y () and ¢(¢) may be restored from the values of y (¢) at
two distinct values of ¢.

5. Under the assumption that random measurement errors are normally
distributed, the confidence intervals for the true values of ¢(¢) and y (¢), I, (¢)
and I, (¢), are given by (5.19) and (5.16).



Chapter 6

Statistical Properties
and the Accuracy

of the Catalog

of the Almagest

1. Introductory remarks

We already know that the analysis of errors in the catalog and the related
problem of the accuracy of measurements are crucial for dating. The failures
of the attempts reviewed in Chapter 3 may be explained by the fact that they
did not involve any analysis of accuracy, both of the entire catalog and of
measurements of separate groups of stars. A preliminary rough analysis of
the accuracy we have carried out in Chapters 2 and 4. In Chapter 2, on the
basis of a generalization of results obtained by various researchers of the
Almagest, we have revealed the division of the star atlas into seven domains
that differ in the rate of doubtfully identifiable stars. In Chapter 4 we also
considered the problem of identification of fast stars in a modern catalog with
stars in the Almagest.

The main tools for what we are going to do in this chapter are the methods
exposed in Chapter 5. Using them, we first prove that the seven domains really
have different accuracy characteristics. Namely, they differ both in systematic
and random errors. For these domains, we will figure out the errors in the
determination of poles of the ecliptic and the mean square errors of measure-
ments. Further, we find the confidence intervals for the estimates g, and
@stat Of the parameters of systematic errors. Then we analyze comparatively
small areas of the sky, constellations and vicinities of particular stars. The aim
of this analysis is to check that the previously found values of yy, and g, are
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indeed systematic errors of the catalog, but not the result of superposition of
several group errors characteristic for various groups of stars.

As a result, we educe the well-measured domain of the sky, in fact, fairly
large, which we will further use for dating the catalog.

2. Seven domains of the starry sky

1. In Chapter 2 we have described seven domains in the sky, see Fig-
ure 6.1. We have considered 864 stars in these domains; for the reasons
explained in Chapter 2, we excluded from consideration the stars listed in the
informatas, as well as outlies and doubtfully identified stars. Table 6.1 indi-
cates what particular stars are attributed to what particular domains. Namely,
each line of the table, corresponding to a domain exhibits the Baily numbers
of the stars attributed to the domain.

We have also marked in Figure 6.1 the stars that have proper names in the
Almagest. 1t is obvious that the domain A is clearly delineated by the named
stars. This apparently indicates that the compiler attributed a special signifi-
cance to the domain (see Chapter 2). The domain A is of special importance
for us; it contains the pole of the world N and the pole of the ecliptic P. If
the named stars that border the domain served as the reference stars, then
Ptolemy proceeded inwards in the domain A, starting from these stars and
measuring the coordinates of the rest of the stars in reference to the marked
named stars. In this process errors of measurement could accumulate, so
it is natural to expect that the stars in the domain A outside the zodiac are
measured on average a little worse than the zodiacal stars. Six named stars
of the Almagest lie either in the zodiac or immediately near it (Procyon).

2. Let us begin with finding the positions of the pole of the ecliptic ap-
propriate to each of the seven domains. As shown in Chapter 5, the positions
are determined by the parameters s and @gar, which can be found from
the method of least squares. So, let us calculate from (5.3.16) and (5.3.17)
the values of ygar(t) and ¢gat(?) for each of the seven domains and find the
corresponding positions of the pole of the ecliptic; see Figure 6.2, where the
true positions P(¢) of the pole of the ecliptic are depicted for the values of ¢
ranging from 1 to 25. The length of the segment that connects the position
of the pole of the ecliptic appropriate, say, for the domain B with, say, P(10)
is equal to y2,(10), and the angle counted from the line denoted by D’(10)
(cf. Figures 5.4 and 5.5) is equal to wslfat(IO); of course, similar magnitudes for
other domains and other values of ¢ have similar sense.

In Table 6.2 we give exact values of ygat(18) and ¢, (18) for each of the
domains. These values fix the position of the pole of the ecliptic appropriate
to the domain (as well as any pair of values yg,(t) and @gat(2); see Section
5.4). Besides, Table 6.2 contains the initial mean square deviations oj,;; (18)
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Figure 6.1. Seven domains of the starry sky of the Almagest.

and the residual mean square deviations o, that ensue after compensation
for the systematic errors (see (5.3.8) and (5.3.9)). We have shown in Sec-
tion 5.4 that o, does not depend upon the moment of time ¢ (if the stars in
question are fixed), but is determined by the position of the “observer’s pole
of the ecliptic” of the group of stars. The value ¢+ = 18 in Table 6.2 is chosen
because it is the traditional date for the Almagest. Further, in Table 6.2 we
give pint(18), the rate of the stars that at t+ = 18 had latitudinal deviations
below 10, and pnin , the rate of the stars that have latitudinal deviation below
10" after compensation for the systematic error.

The positions of poles in Figure 6.2 show that the systematic error in each
group except C renders the catalog older, even in comparison with the time of
Hipparchus. The minimum of systematic error for the domain C is attained
at t = 10 (= 900 AD). However, as we already noted, the position of the
“observer’s pole of the ecliptic” has nothing to do with the date of compilation
of the catalog. The position only indicates the character and magnitude of the
systematic error made by the observer. 1t also follows from Figure 6.2 that
the positions of the pole appropriate to the domains A, Zod Aand Zod B are
rather near, which may mean that the three groups carry the same group error;
we will consider this question in details below, in our analysis of individual



108 PROPERTIES OF THE CATALOG OF THE ALMAGEST

Table 6.1.
Number of stars
Domain of the Baily’s numbers in the domain
sky (before exclusion) left after exclusion
A 1-158, 424-569 249
B 286423, 570-711 262
C 847-977 116
D 712-846, 998-1028 143
M 159-285 94
Zod A 424-569 124
Zod B 362423, 570-711 168

constellations. The position of the pole of the ecliptic appropriate to the
domain B is also not far from the three positions. The positions appropriate
to the domains D and M are a little further; apparently, the systematic error
in these domains is different from, say, the one in the domain 4. The domain
C seems to be an outlie.

3. In order to make the above argument exact, we will use the notion of
confidence intervals; see Section 5.5. We find the functions .. (¢) and @ga; (¢),
1 <t < 25, for each of the seven domains, and display in their graphs the
confidence intervals I, (¢) and I,(¢) for ¢ = 0.1 (see (5.5.16) and (5.5.19)).
The graphs are shown in Figures 6.3-6.9. More complete information about
the lengths of confidence intervals for various values of ¢ and the values t = 7
and ¢ = 18 is given in Table 6.3. Recall (see Section 5.5) that the point y (¢) is
the center of the interval I, (¢) . The interval I, (¢) need not be symmetric with
center at the point ¢4 (2), but this asymmetry is negligible (for our purposes),
so we will think that ¢g.c(¢) is in the middle of the confidence interval. In
Table 6.3 x! denotes the radius of I, (¢), and x¢ the radius of I,(¢).

The data in Table 6.3 lead to the following conclusions. The stars in Zod A
are measured best; namely, compensation for the systematic error reduces the
mean square error in this group down to 12’8, rendering latitudinal deviations
of about 64% stars below 10’. Recall that seven named stars are contained
in this domain or immediately near it (Aquila, Regulus, Arcturus, Procyon,
Vindemiatrix, Spica, and Antares).

The next in accuracy is the group A4, where compensation for the group
error lowers the mean square latitudinal deviation to 165, and increases the
rate of stars with latitudinal deviations below 10’ to more than 50%.

The confidence intervals I,(¢) and I, (¢) for the domains Zod 4and Ahave
similar lengths (see Table 6.3), although the accuracy in Zod A is higher than
in A. This is due to the difference in the number of stars—the less is the
number of stars, the greater is the length of the confidence interval (and the
higher is the accuracy, the less is the length of the confidence interval).
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Figure 6.2. Relative positions of the moving true pole of the ecliptic and the poles of the
ecliptic appropriate to each of the seven domains in the sky of the Aimagest

Table 6.2.
A B C D M Zod A Zod B
vsat(18) 185 136 97 26 6 194 16 4 200
osa(18) 340 345 —1225 527 =505 =217 -235
omt(18) 205 218 23 4 273 230 177 240
Com 16 5 192 25 24 4 205 128 193
Po.(18) 365% 355%  336% 287% 372% 306% 30 9%
Pom 506% 435%  431% 357% 457% 637% 44 0%

The data in Table 6.3 confirm the claimed accuracy 10’ (at least, in latitudes).

The next in accuracy groups of stars are B and Zod B. Their characteristics
are quite similar: mean residual square error is about 19', and the stars with
latitudinal deviations below 10’ constitute about 44%. Although positions
of the pole of the ecliptic appropriate to these groups are quite close to the
positions appropriate to 4 and Zod A, they lie in the confidence intervals
for the latter only at as small values of ¢ as about 0.01; this means that the
systematic errors in B and Zod B apparently differ from the ones in 4 and
Zod A. Furthermore, the accuracy of measurement of stars in Aand Zod Ais
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24 22 20|18 16 14 12 10 8 6 4 2 0

Figure 6.3. Behavior of systematic errors yga:(t), @sar(t) and Bgar(¢) in the domain A4.

much better than that in B and Zod B. Below, we will give more arguments
for this statement.

The stars in the domains C, D and M are measured worse than in the
domains Aand B. Furthermore, the values of . and ¢ga; for these domains
lie in the confidence intervals of similar parameters for A, Zod A, B and Zod B
only at rather small values of ¢. This means that we are to admit the values
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30 4

Figure 6.4. Behavior of systematic errors ysua: (¢), ¢siat (f) and Bgac(¢) in the domain B.

of systematic errors in these domains being different from the ones in A,
Zod A, Band Zod B.

As we analyzed Tables 6.2 and 6.3, we already encountered the question:
Which values of the mean square error are to be treated as large, and which
as small?

In order to answer this question, we will use the analysis of sensitivity
carried out in Chapter 5. Our further argument is illustrated in Figure 6.10.
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Figure 6.5. Behavior of systematic errors ysiat(f), ¢stat(f) and Bgar(t) in the domain C

Let us draw the ellipsoidal level curves of the function o2(y, ¢, 3¢) in the plane
with coordinates (y, ¢) (see (5 3 24)). Draw 1n the same plane the rectangle
with the sides 1, (¢) and I, (¢) (the dotted rectangle in Figure 6.10).

The probability that the true systematic error (y, ¢) lies in the rectangle

1s not less than 1 — 2¢. Let us find 62, ()

max o?(y, ¢, t) where the

maximum 1s taken over all values of (v, ¢) n R(¢). The ensuing value of
o2, (¢) determines the admissible (with the confidence level 1 — 2¢) mean
square latitudinal deviation, and the difference opyax(€) — Omin the admussible
increment of the mean square deviation due to inexactness of the parameters
y and ¢ that determine the systematic error.
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Figure 6.6. Behavior of systematic errors ygu:(f), @siat (1) and Bsiat(2) in the domain D.

In Table 6.4 we give the values of a7, a;; and a,; that determine the level
lines of mean square errors (see (5.3.24), where y is to be expressed in minutes
of arc, and ¢ in degrees of arc) for the domains Aand Zod Aatt = 18, and the
values of Ao = oax(€) — omin calculated for the “extreme” values ¢ = 0.1 and
¢ = 0.005. Note that the values thus obtained vary but slightly with time; they
demonstrate an obvious distinction in accuracy of the domains A4 and Zod A
from the domains B and Zod B. Indeed, even at ¢ = 0.01 the mean square
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Figure 6.7. Behavior of systematic errors ysat(?), @stat(t) and Bgar (t) In the domain M

error in the confidence domain for Zod Atis never as large as the nunimum error
in the domains B and Zod B. A similar statement 1s true for the domain A
although 0,4,, may be greater than 62, this only occurs at ¢ < 001 At the
rest of the values of ¢ the errors in 4 and B are to be treated as essentially
different (distinguishable by statistical criteria) Note that similarly, the stars
in Zod Ahave the accuracy clearly distinct from the stars in A. for all values
of &, omax for Zod A1s less than oy, for A.

Further, Table 6.3 shows that the determination of ¢, 1s not sufficiently

stable, especially for the “bad” domamns C, D and M, which can be seen



2. SEVEN DOMAINS OF THE STARRY SKY 115

" a a & PP WP
y SIS e . S e P >t o
- - e
REX) v me el o .
e . . * . g8 ™ e aan e
ce s 2y . %o ¢ *e_ s o "'---—-._
pre— - - . -——_
’ - . .. fetee « . - -_-ﬁ—--
. - S e e . - . .
e, hL ) . ‘e o Tt . . « ‘e e e .
o et . . .
. a LA D O T A
. . . L4 . S . . - - . .
e, . . et ., e e ® e NERE I L., . s
- R A LI P e e - e . . stat N MRS
- - - e e - . e e ® o ’ . ) ..
- - LI . . [P . . . n . .
Uy C . . e . . . .
1 - . o . . . . . . . N
-~ - - . ., P N
- = . e . L. .. .,
> - h - . e
-~ LI - . ‘e . .o .
b -, R . .
-~ e , . N .. . .
“ L > . .
- - * ., * . e L.
-~ - “ .. . .
‘- ® e ‘.
- M .
— e .,
= - -
o
‘s

24 22 20 18 16 14 12 10 8 6 4 2 0

Figure 6.8. Behavior of systematic errors ysat(?), ¢siat () and Bga (t) in the domain Zod A.



116 PROPERTIES OF THE CATALOG OF THE ALMAGEST

PP S &

24 22 2 18 16 14 12 10 8 6 4 2 0]

- -10 ¢
=4 77
24 2 2041 16 14 12 0 8 6 4 2 0
RIS RSN o
———— —."— ‘P
.- stat
L
—30° e mmmm e m e — e
|
"’,” ‘
—60° 4

Figure 6.9. Behavior of systematic errors yga (1) ¢sai(t) and Bga(t) in the domain Zod B

from the lengths of confidence intervals I,(¢) For example, the length of the
interval for the domain C 1s greater than 180°!

3. Analysis of individual constellations

1 In the previous section, we have found, with the help of methods of
mathematical statistics, the poles of the ecliptic appropriate to large collec-
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Table 6.3.
t=17 t=18

Domain £=01 £=005 =001 ¢=0005 £=01 =05 £=001 £=0.005
A x! =26 3.1 4.1 45 2.7 3.2 42 4.6
x¥ =117 140 18.3 20.0 16.6 19.8 25.9 28.4
B 2.7 32 4.2 4.6 2.6 31 4.0 44
14.7 17.4 22.8 25.0 22.1 26.2 344 37.6
C 4.6 55 7.2 7.9 5.1 6.0 7.9 8.7
91.1 108.2 141.9 155.2 60.7 72.2 94.7 103.5
D 6.3 7.4 9.8 10.7 7.2 8.6 11.3 12.3
283 33.6 44.1 48.2 37.8 449 58.9 64.4
M 54 6.4 85 9.2 6.5 7.7 10.1 11.0
28.2 335 439 48.0 424 50.3 66.0 72.2
Zod A 2.5 29 39 4.2 25 30 4.0 43
114 13.6 17.8 19.5 18.1 21.5 28.2 30.8
Zod B 35 4.2 55 6.0 34 4.1 54 59

14.3 17.0 223 244 19.8 235 30.8 33.7

¢
+ \_ Vont ly(e)
o
Y
I¢(e) _

Figure 6.10. Determination of admissible variations of mean square latitudinal deviations.
The line levels of 62(y, ¢, t) and the confidence triangle for the estimates of (y, ¢) are shown.

tions of stars; the methods are in principle only applicable to large collections.
As a result, we have found out that the groups 4 and Zod A have the best
accuracy and carry similar systematic errors. The groups C, D and M contain
poorly measured stars and carry different systematic errors. Therefore, in the
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Table 6.4.
Zod A A
al 1.11 0.82
a2 0.042 —0.003
an 0.073 0.13
Smin 12/8 16!5
Ao e=0.1 13 1.2
e =0.05 18 17
e =10.01 30 18
e = 0.005 35 33
Omax e=01 14/1 1777
e =0.05 146 1872
e =0.01 158 193
e = 0.005 163 19’8

sequel we will not consider the stars of the last three groups. The stars in B
and Zod B, though measured worse than the ones in 4and Zod A4, may carry
the same systematic error; so far we cannot state this for sure.

The further analysis is due to the following problem. The parameters @ga;
and yg.t that determine the systematic errors had been found from an analysis
of a large group of stars, and have the sense of a turn of the ecliptic that min-
imizes the mean square latitudinal deviation for the stars in this collection.
However, we cannot exclude a priori the possibility that some minor subcol-
lection of the large collection carries its own systematic error, in which case the
above parameters @ga and g, are nothing more than the result of averaging
true systematic errors, and are of little use for us.

Note that the lengths of confidence intervals for ¢, found in the previous
section are very large. This may be explained by insensitivity of latitudinal
deviation to turns through the angle ¢, as well as by the error in ¢ not being
systematic. The different behavior of the two parameters may be easily ex-
plained if we consider, for example, the armillary sphere (see Chapter 1). In
measurements with the help of this instrument, inclination of the ecliptic to
the equator is fixed, so an error in this fixing affects coordinates of all stars
measured with the help of this particular instrument. As for the error in ¢, it
is of a different nature: it arises in each individual measurement, and varies
from star to star.

Therefore, it seems relevant to find the group errors for each constellation

and compare them with the systematic error in the best measured collection
Zod A.

2. Below we investigate twenty-one minor collections of stars, enlisted in
Table 6.5. The structure of this table is similar to that of Table 6.1. We have
selected for study the zodiacal constellations and vicinities of all named stars
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Table 6.5.

Group of stars Baily’s numbers Number of stars
Zodiacal constellations
Aries 362-371, 373, 374 12
Taurus 380-388, 390, 391, 393—410 29
Gemini 424440 17
Cancer 449-454 6
Leo 462481, 483-488 26
Virgo 497-516, 518-520 23
Libra 529-534 6
Scorpius 546-565 20
Sagittarius 570-573, 575-583, 22

585, 586, 590, 591, 593, 594, 596-598
Capricornus 601-608, 610~627 26
Aquarius 629-650, 652656, 658-660, 662668 37
Pisces 674-695, 697, 699-701, 704-706 29
Vicinities of named stars
Arcturus 88-96, 98, 100- 110 21
Antares 546-569 24
Aquila 286-300 15
Capella 220-233 14
Regulus 462-481, 483488, 491-493 29
Sirius 812, 818-835, 837-846 29
Spica 497-503, 505-515, 518-526 27
Vega 149-158 10
Aselli 449454, 456461 12

except Canopus and Vindemiatrix (for the reasons we have explained above)
and Procyon (whose neighborhood contains too few stars).

Finding group errors for individual constellations encounters some diffi-
culties. Suppose G is a constellation, and ¢$,, and y&, are the values found
from the method of least squares, opin is the minimum possible residual mean
square latitudinal deviation, and pg,, is the rate of stars whose residual lat-
itudinal deviation is less than 10’ (at ¢ = 18). Because each individual con-
stellation contains comparatively few stars, the statistical errors in ¥, and
¢S, are too large for any reliable conclusions. Therefore, we also calculate
of and pY, the mean square latitudinal deviation and the rate of stars whose
latitudinal deviation is less than 10’ (for ¢+ = 18) under the condition that the
pole of the ecliptic is at the position appropriate to Zod A (in different words,
under the condition that the group errors are equal to y2¢ 4 and pZ¢ 4),

IfoC isbutalittle greater than oS, , then we have the right to conclude that
the group error in G is similar to that in Zod A. The difference between plG
and pC._ is another criterion of similarity of the group error and the systematic

G

error. Recall that o and orlG do not depend on ¢ if we consider a collection
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Table 6.6.

Group of stars oS oS of pg“ pgm pe
Zodiacal constellations

Aries Z1 19.7 17.2 189 45.5% 45.5% 72.7%
Taurus Z2 232 181 206 276% 414% 41.4%
Gemini Z3 17.8 10.5 11.0 294% 824% 58.8%
Cancer 74 13.8 43 52 33.3% 100% 100%
Leo zZ5 20.2 11.1 11.2 19.2% 65.4% 65.4%
Virgo Z6 18.4 13.6 144 391% 56.5% 47.8%
Libra Z7 84 6.1 93 833% 83.3% 83.3%
Scorpius Z8 18.8 13.7 15.1 30.0% 65.0% 55.0%

Sagittarius 29 164 143 158 304% 609% 60.9%
Capricomus 710 162 106 113 423% 654% 57.7%
Aquarius Z11 286 173 192 184% 44.7% 44.7%
Pisces 212 225 215 217 517% 414% 345%

Vicinities of named stars

Antares S1 177 126 138 333% 708% 58.3%
Aselli S2 157 110 121 333% 583%  66.7%
Capella S3 346 303 340 357% 143% 64.3%
Aquila S4 240 237 267 400% 333% 133%
Vega S5 200 141 171 500% 60.0% 30.0%
Arcturus S6 242 172 200 190% 381% 28.5%
Sirius S7 152 119 259 474% 526% 15.8%
Spica S8 179 141 145 444% 481% 48.1%
Regulus S9 252 210 211 172% 58.6% 58.6%

of fixed stars, and vary but slightly with time otherwise. A similar statement
is true for the rate of the stars whose latitudinal deviations do not exceed 10'.

Table 6.6 displays the relevant numeric data, also presented in visual form
in Figures 6.11 and 6.12. In Figure 6.11 we present data for constellations
(denoted by Z1-Z12), and in Figure 6.12, for vicinities of named stars (S1-S9).
It should be noted that although some named stars are zodiacal, their vicinities
do not coincide with the corresponding zodiacal constellations, but are groups
of stars of the constellations that have acquired names in Bayer’s notation.
These stars are the brightest, and are usually most reliably identified, which
enhances reliability of the conclusions.

3. It follows from the data in Table 6.6 and the graphs in Figures 6.11
and 6.12 that zodiacal constellations in the domain A4 (Gemini, Cancer, Leo,
Virgo, Libra, Scorpio) have a remarkable property that the mean square error
o1 and the rate of stars whose latitudinal deviations do not exceed 10’ obtained
under the assumption that the group error is equal to y2? 4 and pZ¢ 4 differ
but slightly from oy, and ppin, that ensue under the assumption that the
position of the pole of the ecliptic is “optimal” for the particular constellation.
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Figure 6.11. Analysis of group errors in zodiacal constellations. The graphs of the initial
and residual (after compensation for the systematic errors) are shown (upper graphs). Here
onu IS the mean square error over the consteliation before the compensation, o, is the mean
square error after compensation for the systematic error relevant for Zod A4, and o, is the
mean quadratic error after compensation for the systematic error found for this constellation
(the minimum possible value). The rates of stars whose latitudinal deviations do not exceed
10', Puit» P1, Pmin (the lower graphs below).

The difference is greatest in the “best measured” constellation Libra, where all
quantities ojnit , Omin and o1 do not exceed 10, and pinit = Pmin = p1 =83.3%
(the rate of stars that have at most 10’ latitudinal deviation). The equality
Dinit = Pmin = D1 = 83.3% may be explained by the fact that the constellation
almost lies in the equinoctial axis, so the turn y practically does not affect it.
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Figure 6.12. Analysis of systematic errors in vicinities of named stars. Notation is similar
to that in Figure 6.11.

A similar remark applies to constellations in Zod B, although with some
reservations; in fact, it is not very important for us, because Zod B contains
no named stars. Nonetheless, we should note an interesting fact about Aries:
although o is but a little less than oy, (note that oy, also differs but slightly
from oin), we have p; > pint = Pmin; hence the displacement of the pole of
the ecliptic to the position appropriate to Zod A sharply increases the rate of
well-measured stars in Aries (up to 72.7%).

The following general conclusion may be drawn from the analysis of zodia-
cal constellations. If the “optimal” deviation oy, is much less than Ot , then
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the assumption that the group error is equal to the systematic error (in Zod A)
and the corresponding compensation for this error leads to 07 « 0yn;. This
is true for Gemini, Cancer, Leo, Virgo, Scorpio, Capricornus and Aquarius.

If o 1S close to oy, then as a rule, omm < 01 < oy, and the effect of
displacement of the pole of the ecliptic to the position appropriate to Zod A
is barely noticeable. This property is characteristic for Aries (as we noted, the
displacement sharply raises the rate of well-measured stars in Aries), Taurus,
Libra, Sagittarius, and Pisces. Among these, the good accuracy properties of
Libra are practically unaffected by the displacement of the pole of the ecliptic
from the position “optimal” for the constellation to the position appropriate
to Zod A, the accuracy of Aries even improves, and the properties of the rest
of the constellation do not alter, remaining “average”. A typical example
is Taurus, for which oy = 232, oqn = 181, 07 = 206, ppe = 27.6%,
Pmn = P1 = 41.4%. Of all constellations, Pisces stands out: here we have
both pmun < Pine and p1 < piny, and Oyt X On = 07

4. The properties of vicinities of named stars vary still more. First of all,
let us note the vicinities of Aquila and Sirius. In both cases, compensation
for the systematic error appropriate to Zod A brings about both an increase
of the mean square latitudinal deviation (in the case of Sirius, an essential
increase from 15/2 to 25/9) and a decrease of the rate of well-measured stars
(for Aquila, from 40% to 13.3%, and for Sirius, from 47.4% to 15.8%). This
means that the group errors appropriate to these vicinities differ from the
one appropriate to Zod A; unfortunately, a reliable determination of these
group errors seems impossible. Therefore we exclude neighborhoods of Sinus
and Aquila from our further treatment.

The properties of the rest of the vicinities of named stars are quite similar
to that of zodiacal constellations. Namely, compensation for the group error
appropriate to Zod A essentially decreases (down to the values quite close to
the minimum possible) the mean square error for the vicinities of Antares,
Aselli, Arcturus, Spica and Regulus; the rates of stars whose latitudinal devi-
ations do not exceed 10/ also increases. The vicinity of Capella has properties
similar to that of Aries: the mean square latitudinal deviation is practically
unaffected by the displacement of the observer’s pole of the ecliptic to the
position computed for Zod A, but the displacement raises to 64.3% the rate
of stars with individual latitudinal deviations below 10/ (the rate being equal
to 36.7% initially, and 14.3% in the “optimal” case!). The picture is quite the
opposite in the vicinity of Vega: the displacement improves essentially the
mean square latitudinal deviation, but decreases the rate of stars with small
individual latitudinal deviations. Thus, the character of group errors in the
vicinities of Capella and Vega remains unclear.

5. Although we have shown the similarity of the characteristics o; and
p1 t0 o and pmn for most constellations, the question whether the error



124 PROPERTIES OF THE CATALOG OF THE ALMAGEST

Table 6.7.

Group of stars A oS of pe, pe. 2%

Aries Z1 19.7 17.2 17.2 45.5% 45.5% 45.5%
Taurus 72 23.2 18.1 20.2 27.6% 41.4% 41.4%
Gemini Z3 17.8 10.5 10.6 29.4% 82.4% 82.4%
Cancer Z4 13.8 43 4.5 33.3% 100% 100%
Leo Z5 20.2 11.1 11.1 19.2% 65.4% 65.4%
Virgo Z6 18.4 13.6 144 39.1% 56.5% 52.2%
Libra z7 84 6.1 6.1 83.3% 83.3% 83.3%
Scorpius Z8 18.8 13.7 13.7 30.0% 65.0% 70.0%
Sagittarius Z9 16.4 14.3 14.4 30.4% 60.9% 56.5%
Capricornus 210 16.2 10.6 10.6 42.3% 65.4% 65.4%
Aquarius Z11 28.6 17.3 18.7 18.4% 44.7% 47.4%
Pisces 212 225 215 21.7 51.7% 41.4% 37.9%

@stat 1S Systematic remains open. In order to answer it, let us find for zodiacal
constellations (that contain also the six named stars) two more characteristics.
Consider all possible errors determined by y = y2¢ 4 and various ¢ and find
the value ¢® of ¢ that minimizes the residual mean square deviation over
the constellation after compensation for the error; we denote the minimum
value of the mean square deviation by o, , and the corresponding rate of stars
with individual deviations below 10’ by p,. Thus, for a constellation G,

(1) of = oy (1) = mino Sy, 0,1)
(2) p? = arg m(}n oy 2 A o, 1)

Table 6.7 gives the values of o, and p,; it is similar to Table 6.6, moreover,
for reader’s convenience we give here some data once more. The data are
also represented graphically in Figure 6.13 in the fashion similar to that of
Figure 6.11. It is obvious from the table and the figure that fixing y = y2¢ 4
and varying ¢ allows reaching the values of o, equal to, or close to oy . The
corresponding values of p, are also close to pmn. It is interesting that the
picture for constellations in Zod B is similar.

This shows that y2¢ 4 is really the systematic error made by the compiler
of the catalog as he measured the stars in Zod 4 and the named stars (except
Sirius, Aquila and Canopus). As for 24 4 it is apparently the result of
averaging individual errors of measurement, and there are no grounds for
treating it as a systematic error. Furthermore, the value of ¢, is determined

but roughly, so it provides little information.
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Figure 6.13. Analysis of stability of ¢y, . Notation is as in Figures 6.11 and 6.12, but in all
cases the optimal value of y for the constellation is chosen.

4. Brief conclusions

1. The above analysis confirms that the “observer’s poles of the ecliptic”
of the stars in A and Zod A are near, that is, the two domains are measured
with the same systematic error.

2. The analysis provides no grounds to assume that systematic errors in
the domains C, D and M coincide with the one for Aand Zod A.

3. The accuracy of measurement of stars in 4 and Zod A is much higher
than that in the rest of the domains.
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4. The residual mean square deviation in Zod Ais 12/8; about two-thirds
of all stars in the domain have individual latitudinal deviations below 10’ (the
claimed accuracy of the catalog). The similar characteristics of the domain A4
are 16/5 and 1/2.

5. An analysis of zodiacal constellations and vicinities of individual stars
leads to the conclusion that the parameter y (the error in the inclination of
the ecliptic) is a systematic error. As for the parameter g, it may be the result
of averaging various groups or systematic errors.

6. For Gemini, Cancer, Leo, Virgo, Libra, Scorpio, Sagittarius, Capri-
cornus, and for vicinities of Antares, Aselli, Arcturus, Spica and Regulus,
the group errors y are close to (or coincide with) the systematic error ysat
computed for the best measured domain Zod A.

7. Nothing definite can be said about the group errors for Aries and
Taurus, as well as for vicinities of Capella and Vega; the group errors for
these groups of stars may coincide with or differ from the ones for Zod A.

8. The group errors for vicinities of Sirius and Aquila differ from the one
appropriate to Zod A, but no particular values for these errors can be found.

The group error for Pisces is also likely to be different from y 24 4.



Chapter 7
Dating the Star Catalog
of the Almagest

1. Informative kernel of the catalog

The aim of the analysis carried out in Chapters 1-6 was to diminish latitu-
dinal errors in the coordinates of stars given in the catalog of the Almagest.
Several complementary media was used to that end: exclusion of doubtfully
identified stars, exclusion of outlies, finding group errors for separate parts of
the catalog and compensation for the group errors, and confinement to the
best measured parts of the catalog (after compensation for the group errors);
as we have found out, the best measured is the domain A, and especially its
part Zod A. After compensation for the group error, the rate of stars with
latitudinal deviation below 10/ is 50% in 4 and 64% in Zod A. We also ana-
lyzed individual constellations and have distinguished the ones in which the
group error coincides with the systematic error characteristic for Zod A.

Thus, we have confirmed that the accuracy 10, claimed by the compiler of
the catalog, is really reached at least for most stars in the domain A.

However, dating the catalog requires considering sufficiently fast and suf-
ficiently well measured stars, so we need estimates for individual errors. The
above statistical characteristics provide no information about which particular
stars are measured well and which are not.

A choice of such stars can only be based on some plausible assumptions
founded on our knowledge of practical rules of measuring stellar positions
(see Chapter 1).

127
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In antiquity and the Middle Ages, and in fact nowadays the so-called ref-
erence stars were used, which are few in comparison with the total number
of stars in the catalog. It is known that Tycho Brahe used 21 reference stars,
disposed in the zodiac**. The modern system of reference stars comprises
several thousands stars?®®. Unfortunately, we do not know what stars were
used in the Almagest for reference; it is only clear that Regulus and Spica had
to be among them, because particular sections of the Almagest are devoted to
their measurement. It is natural to suppose that the compiler of the catalog
measured especially thoroughly the named stars; there are twelve named stars
in the catalog: Arcturus (¢ Boo, 110), Regulus (a¢ Leo, 469), Spica (« Vir,
509), Vindemiatrix (¢ Vir, 509), Capella (¢ Aur, 222), Lyra (Vega; a Lyr, 149),
Procyon (e CMi, 848), Sirius (o« CMa, 818), Antares (« Sco, 553), Aquila (Al-
tair; o Aq, 288), Aselli (y Can, 452) and Canopus (o Argo Navis, 892). All
these stars are bright and stand out sharply against their vicinities, and they
form a convenient base in the celestial sphere. Many of these stars have a
notable proper motion, and some (Arcturus, Procyon and Sirius) have high
velocities of proper motion. Seven of the stars lie either in Zod A or imme-
diately near it (Arcturus, Spica, Procyon, Aselli, Vindemiatrix, Regulus and
Antares), and nine border the domain A (add Lyra and Vega to the seven
stars). Thus, even if the twelve stars did not serve as references, they were to
be measured especially thoroughly.

However, the twelve stars do not all have equal status.

First, Canopus is too much to the south, so refraction greatly affects its
apparent position; hence its coordinates in the catalog are given with too
large an error (greater than 1°).

Second, the coordinates of Vindemiatrix originally measured by the com-
piler of the catalog are not known; only the results of later measurements are
available??,

Furthermore, the group errors in measurements of vicinities of Sirius and
Aquila differ from the group errors for the rest of the stars found in Chapter 6.
Since we cannot determine the group errors for these two stars, we cannot
compensate for them.

Thus, eight named stars are left for use in dating, whose vicinities have the
same group error (at least, the same component y of the group error). We
will call the collection of the eight stars the informative kernel.

It is natural to assume that since the claimed accuracy of the catalog is
confirmed, it must be attained at the stars in the informative kernel (after com-
pensation for the group error). Our further considerations will be based on this
assumption.

Meanwhile, it is far from obvious that any date for the catalog may be ob-
tained from an analysis of the informative kernel. Although we have restored
the true accuracy of the catalog by compensating for the group errors, it is
not at once clear that the residual error is sufficiently small. Furthermore, al-
though we have proved similarity of the group errors for the vicinities of stars
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in the informative kernel, this does not necessarily mean that the individual
errors for the stars are the same. Although the situation that the central star
is measured with an essentially different error in comparison with its vicinity
seems unnatural, strictly speaking we cannot a priori reject this possibility.
We also should not exclude the possibility that a star in the informative kernel
is measured to a worse accuracy than 10'.

Thus, the very existence of an interval of time for which the above as-

sumption is true is an additional confirmation for the statistically derived
conclusions.

2. Preliminary considerations

1. In the previous section we have distinguished a group of stars, which
we called the informative kernel of the Almagest; we will analyze in details its
behavior in the following sections. In this section we will look at the behavior
of the group consisting of all the twelve stars that are named in the Almagest.
This analysis demonstrates the improvement of accuracy of the catalog due
to compensation for the systematic error, and provides additional grounds
for the statement that the three stars of twelve (Canopus, Sirius and Aquila)
break the homogeneity of the sampling, being outlies in relation to the rest
of the named stars (a reason for this was given in Chapter 6, on the basis of
an analysis of group errors in the latitudes of stars in various domains of the
sky).

Denoteby A B; (¢, y, ¢) the difference between the latitude of the ith named
star of the Almagest (1 < i < 12) obtained after compensation for the group
error (y, ¢) and its true latitude computed for the epoch ¢.

2. Letuslook at how the true accuracy of latitudes relates to the value of
scale division (10') under the assumption that the catalog contains no global
systematic errors. Table 7.1 exposes absolute latitudinal deviations of the
twelve named stars for various a priori dates ¢. The first column of the table
contains Baily numbers of the stars; the values of latitudinal deviations are
given in minutes of arc.

It is obvious from the table that for seven of the twelve stars, the latitudinal
deviations exceed 10’ for all possible values of t. In the columns correspond-
ing to traditional dates 100 AD (Ptolemy’s time) and 200 BC (Hipparchus’
time) the large error in the coordinate of Arcturus (30'-4(’) stands out. It
seems strange that the brightest star in the Northern hemisphere was ob-
served by Ptolemy (or Hipparchus) worst. Further, it follows from the text
of the Almagest that the coordinates of Regulus had been measured several
times and that this star served as one of the reference points for measure-
ment of coordinates of other stars, so it is natural to expect that Regulus had
been measured with highest accuracy, so its latitudinal deviation should not
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Table 7.1.

1800 AD 1400 AD 900 AD 400AD 100AD 200BC
Arcturus (110) 37.8 212 0.9 193 314 433
Sirius (818) 23.6 18.3 11.7 5.1 12 2.6
Aquila (288) 8.6 9.4 10.5 11.8 12.6 134
Vindemiatrix (509) 13.0 14.3 15.8 17.1 17.8 184
Antares (553) 32.6 295 25.5 21.6 19.3 17.0
Aselli (452) 305 285 259 232 215 19.8
Procyon (848) 112 16.0 219 27.6 31.1 344
Regulus (469) 175 16.6 154 14.0 13.0 121
Spica (510) 24 0.7 13 31 4.2 52
Lyra (149) 154 14.2 12.5 10.8 9.8 8.7
Capella (222) 219 21.7 213 21.0 20.8 20.6
Canopus (892) 51.0 54.2 58.2 62.3 64.8 67.3

Table 7.2.

1800 AD 1400 AD 900 AD 400AD 100AD 200BC
Arcturus (110) 299 15.5 23 20.0 30.5 41.0
Sirius (818) 442 39.2 32.7 259 218 175
Aquila (288) 27.0 28.7 30.7 325 33.5 344
Vindemiatrix (509) 15.6 149 13.8 12.6 11.8 11.0
Antares (553) 133 11.0 8.5 6.2 49 3.7
Aselli (452) 13.2 10.2 6.5 29 0.9 11
Procyon (848) 8.1 4.0 1.2 6.7 10.1 135
Regulus (469) 6.1 35 04 2.7 5.1 6.2
Spica (510) 51 49 44 37 33 217
Lyra (149) 51 6.7 85 10.0 10.8 11.5
Capella (222) 13 15 2.1 29 3.5 42
Canopus (892) 71.5 75.0 79.2 83.1 85.4 87.6

exceed 10’. Note that the latitudinal deviation of another bright star in the
ecliptic, Spica, whose coordinates had also been measured by Ptolemy sepa-
rately and which also was then used as a reference star (see Chapter VII.2 of
the Almagest !7), does not exceed 5, half the value of the least division of the
catalog.

3. Let us now take into account the systematic error found in Chapter 6.
Since the component y varies slowly with time from 1 AD to the Middle Ages,
and ¢ affects the picture but little, we will set y = 21" and ¢ = 0.

Table 7.2 exposes latitudinal deviations of stars computed after compensa-
tion for the systematic error determined by y = 21’ and ¢ = 0.

A comparison of Tables 7.1 and 7.2 shows that compensation for the sys-
tematic error sharply improves accuracy of coordinates of the named stars
for all a priori dates. The latitudes of Regulus and Spica here turn out to be
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measured to an accuracy within 5’ whatever be the date of compilation of the
catalog from late antiquity to late Middle Ages. Furthermore, for the dates
in the interval 6 < ¢ < 10 (900 AD-1400 AD), the latitudinal deviations do
not exceed 10’ for eight of the twelve named stars. The eight stars are exactly
the ones contained in the domain 4 we have distinguished in Chapter 6 as we
carried out a statistical analysis of the catalog of the Almagest.

Naturally, the above argument requires a further justification; in particular,
other values of y and ¢ should be tried. Detailed calculations and more exact
statements are given in subsequent sections of this chapter.

4. Anadditional information about the date of compilation of the catalog
may be obtained from the following. Let E be a collection of stars in the
Almagest and AB;(t, y, ¢) be the latitudinal deviation of the ith star in the
collection (1 < i < n). Let us construct empirical distribution functions for
latitudinal errors for the stars in E:

1
(1) Fryo(x) = ;#{i |ABi(t, v, @)l < x}

where nis the number of stars in E, and #{-} denotes the number of stars in the
set {-}. Comparing these functions constructed for various values of ¢, y and
®, we may try to select the values so that the latitudinal errors for the stars in
E are minimal (in the stochastic sense). As a measure of distinction between
two sets of errors, we will use the mean difference. This may be represented
visually as the area of the domain between the graphs of the two distribution
functions; the area of each of the pieces between the graphs is taken with the
sign depending on which graph bounds the domain from the right and which
from the left (see Figure 7.1). The distribution function F, , 4, that is more
to the left than the rest of the functions F, , , corresponds to the least errors
in latitudes of stars in E. In this case, it is natural to treat the date ¢y and the
value of the systematic error (yy, ¢o) as approximations of the true date and
the true systematic error.

Let us use the well-known catalog of Tycho Brahe, compiled in the second
half of the 16th century to illustrate this. We considered the set E of thirteen
named stars in the catalog, and have constructed the empiric distribution
functions F,, , for y = ¢ = 0 and three values of t: t = 3 (1600 AD),
t = 3.5 (1550 AD) and ¢t = 4 (1500 AD). The result is displayed in Figure 7.2.
It is obvious from the figure that if we do not take into account a possible
systematic error (we have put y = ¢ = 0), the optimal date for the catalog
is t = 3.5 (1550 AD); this date minimizes in the above sense the errors in
latitudes of the thirteen named stars. The date 1550 AD is really near the
true date of compilation of the catalog. The thirteen named stars are Regulus,
Spica, Arcturus, Procyon, Lyra (Vega), Sirius, Capella, Aquila and Antares,



132 DATING THE STAR CATALOG OF THE ALMAGEST

P

Figure 7.1. Comparison of random variables. The area marked by plus can be viewed as
a measure that £ is greater than n.

named also in the Almagest, and also Caph (8 Cas), Denebola (8 Leo), Pollux
(B Gem) and Shiat (8 Peg).

Let us now consider the empiric functions of distribution F; , , for the set E
of the twelve named stars of the Almagest (see Section 1). In Figure 7.3 we
give the graphs of these functions for various y and ¢t = 5 (1400 AD), t = 10
(900 AD), t = 18 (100 AD), and ¢ = 20 (100 BC); we have set ¢ = 0, because
the picture is but little sensitive to the value of ¢. The values t = 10 and
y = 21’ turn out to be optimal.

The behavior of the graphs of F; , , for the Almagest is a little sensitive
to variations of the choice of the named stars. For comparison, we give in
Figure 7.4 the graphs for the thirteen stars that are named in the catalog
of Tycho Brahe (with the coordinates as given in the Almagest); the values
y = 21’ and ¢t = 10 are optimal for this set of stars too. In Figure 7.4, the
difference between the values y = 0 and y = 21’ is quite clear: all the graphs
corresponding to y = 21’ are more to the left (and so the errors are smaller)
than the ones corresponding to y = 0. In other words, the estimate y = 21’
is “better” than y = 0 for all ¢ in the a priori dating interval.
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Figure 7.2. Companson of distribution functions of latitudinal deviations in Tycho Brahe s
catalog at various a priort dates Obviously, the date ¢y = 3 5 (1550 AD) 1s optimal
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Figure 7.3. Companson of distnbution functions of latitudinal deviations in the collection of
the twelve named stars of the Aimagest at various a prion dates and various compensations
for the systematic error Obwviously, the optimal date i1s t = 10 (900 AD)
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Figure 7.4. Comparison of distribution functions of latitudinal deviations in the collection
of the thirteen named stars of Tycho Brahe’s catalog mentioned in the Almagest at various a
priori dates and various compensations for the systematic error. Obviously, the optimal date
is t = 10 (900 AD).

5. To conclude this section, let us discuss whether it is possible to expand
the informative kernel of the Almagest and not worsen the latitudinal accuracy
of the collection. It appears natural to start from the collection of all stars
that have by now acquired proper names. The names were given to stars in
antiquity, and possibly the author of the Almagest attributed special signifi-
cance to many of them. The list of all such stars is given in Table Ap. 2 in the
Appendix.

It turns out, however, that this expansion of the collection of named stars of
the Almagest makes the accuracy of latitudes much worse. Figure 7.5 shows the
dependence of the rates of stars with latitudinal errors below 10’ and 20’ (after
compensation for the error with y = 2(/) on time. The graphs demonstrate
that only 32 stars of 52 are ever within 20/ (in latitude), and only about one-
third of all stars (19 of 52) are ever within 10’ from their positions given in
the Almagest. The dashed line in Figure 7.5 is the graph of mean latitudinal
deviation (after compensation for the systematic error with y = 20/) of the
collection of 38 stars whose latitudinal deviations are at some ¢ below 10’. The
graphs demonstrate that the mean deviation varies but slightly with ¢.
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Figure 7.5. The collection of 52 stars that have medieval names and are mentioned in the
Almagest (as a rule, they have no names in the Aimagest). Upper graphs: The number of
stars whose latitudinal deviations after compensation for the systematic error do not exceed
10’ (20') dependence on the a priori date. Lower graph: The mean latitudinal deviation over
the collection dependence of the a priori date. It is obvious that both characteristics depend
but slightly on the a priori date, so the collection is of little use for dating purposes.

We have also considered different possibilities of expanding the informa-
tive kernel (for example, taking into account brightness of the stars); all at-
tempts lead to a sharp worsening of accuracy and to the loss of sensitivity
of characteristics of the expanded collection to the date ¢. Apparently, this
worsening is due to the fact that the expansions of the informative kernel lead
to the inclusion of stars that lie in the domains with different group errors.

3. Statistical dating procedure

1. The hypothesis that the real accuracy of measurement of named starsin
the catalog corresponds to the claimed accuracy gave us the possibility to give
in Section 2 a qualitative answer about the date of compilation. Namely, we
have shown that the configuration of the informative kernel varies sufficiently
fast to provide a possibility to determine the date. So now we may consider
the question about the quantitative determination of a dating interval.
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The following procedure, which we call statistical, looks natural within
the framework of our approach. The procedure uses, on the one hand, the
hypothesis about the accuracy of measurement of named stars, and on the
other hand, the statistical characteristics of group errors found in Chapter 6.

Statistical Dating Procedure

a) Fix the confidence level 1 — ¢.
b) Fix a moment of time ¢ and find the confidence interval I, (¢) for the

corresponding value of the component y2¢ 4 of the group error for Zod A.
Put

Y] A(t) =min A(t, y, ¢)

where the minimum is taken over all y € I, (¢) and all possible values of ¢, and
At,y,p) = 1max |AB(t, y, ¢)| is the maximum latitudinal deviation over the

<i<8
stars in the informative kernel computed for the moment ¢ after compensation
for the systematic error (y, ¢).
c) If A(r) does not exceed 1/, the claimed accuracy of the catalog, then
the year ¢ should be treated as a possible date of compilation of the catalog;
otherwise the catalog cannot be attributed to the year ¢.

Of course, the result of application of the statistical procedure depends on
the choice of the confidence level 1 — . Therefore the ensuing results are
to be tested for stability with respect to variations of €. This, as well as some
other tests will be carried out below.

2. Before we start to present our final results, we first give some informa-
tion on how A(t, y, ¢) depends on ¢, y and ¢. In order not to overload
our exposition, we represent the dependence in graphical form; see Fig-
ures 7.6-7.23. Each picture corresponds to a moment of time ¢t = 1,...,18
(recall that ¢ = 1 is 1800 AD, and ¢ = 18 is 1 AD). The values of y are
plotted as abscissas and the values of ¢ as ordinates; the domains where
A(t, y, ¢) < 10/ are crosshatched, the domains where 10/ < D(¢, y, ¢) < 15
are hatched, and the domains where 15 < D(t, y, ¢) < 20’ are dotted; in
blank areas, A(t, y, ¢) > 20’. The bold dot in each figure marks the point
(v 24 A(t), 224 A(¢)). Tt is obvious from the figures that the crosshatched do-
mains only appear at 6 < ¢ < 13, and the hatched domains at 4 < ¢ < 16;
the spots attain maximum size at 7 < t < 12. At¢ > 18 (note that these
values of ¢ cover both the epochs of Ptolemy and Hipparchus), no points with
A(t,y,p) < 20 exist in the area displayed. In other words, the maximum
latitudinal deviation of the named stars that corresponds to attributing the
catalog to 100 AD or earlier is at least two times as large as the claimed accu-
racy of the catalog. In fact, this error even exceeds the residual mean square
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Figures 7.6 through 7.23. The minimax deviation A(t, y, ¢) dependence on the a prion
date ¢ and the parameters of the systematic error y and ¢ At fixed ¢ the rectangular con-
fidence neighborhood of the point (y2¢ 4(t), 924 4(t)) (marked bold) in the plane with the
coordinates (y, ¢) 1s shown The crosshatched domains are the sets of the parameters that
lead to the minimax latitudinal deviation below 10’ The domains where the deviation s be-
low 15’ are hatched, and those with the deviation below 20’ are dotted The values of ¢ for
which the crosshatched domains are not void constitute the interval of admissible dates for
the catalog The figures cover the intervals 100-1800 AD
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Figures 7.6 through 7.23. The minimax deviation A(z, v, ¢) dependence on the a prior
date ¢ and the parameters of the systematic error y and ¢ At fixed ¢ the rectangular con-
fidence neighborhood of the point (y2¢ 4(¢), 924 4(t)) (marked bold) in the plane with the
coordinates (y, ¢) Is shown The crosshatched domains are the sets of the parameters that
lead to the minimax latitudinal deviation below 10’ The domains where the deviation is be-
low 15’ are hatched, and those with the deviation below 20’ are dotted The values of ¢ for
which the crosshatched domains are not void constitute the interval of admissible dates for
the catalog The figures cover the intervals 100-1800 AD
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Figures 7.6 through 7.23. The minimax deviation A(t, y, ¢) dependence on the a prion
date ¢ and the parameters of the systematic error y and ¢ At fixed ¢ the rectangular con-
fidence neighborhood of the point (y2¢ 4(t), 924 4(t)) (marked bold) in the plane with the
coordinates (y, ¢) Is shown The crosshatched domains are the sets of the parameters that
lead to the minimax latitudinal deviation below 10’ The domains where the deviation is be-
low 15’ are hatched, and those with the dewviation below 20’ are dotted The values of ¢ for
which the crosshatched domains are not void constitute the interval of admissible dates for
the catalog The figures cover the intervals 100-1800 AD
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Figures 7.6 through 7.23. The minimax deviation A(t, ¥, ¢) dependence on the a priori
date ¢ and the parameters of the systematic error y and ¢ At fixed ¢ the rectangular con-
fidence neighborhood of the point (y2¢ 4(t), pZd 4(r)) (marked bold) in the plane with the
coordinates (y, ) 1s shown The crosshatched domains are the sets of the parameters that
lead to the minimax latitudinal deviation below 10’ The domains where the deviation i1s be-
low 15’ are hatched, and those with the deviation below 20’ are dotted The values of ¢ for
which the crosshatched domains are not void constitute the interval of admissible dates for

the catalog The figures cover the intervals 100-1800 AD
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errors for the domains A, Zod A, B and Zod B, and is close to the residual
mean square error for the domain M. Because of their emptiness, we do not
adduce the pictures for ¢ > 18.

Thus, within the ranges of y and ¢ used in the figures (in fact, rather large),
it is impossible to make the latitudinal deviations of all the eight named stars
less than 10" if t < 6 (after 1300 AD) and if ¢ > 13 (before 600 AD). If we
raise the admissible error up to 15, then this level cannot be reached after
1500 AD and before 300 AD. We will discuss these facts in more details below,
and now we will obtain a dating interval for the Almagest from the statistical
procedure described as above.

3. Letusfix t and the level ¢ > 0, and put
2) Sie) = (y :min At y, ) <)

Generally speaking, the set S; (o) can be empty. Let us choose ¢ = 10’ and
consider the intersection of S;(a) with the confidence interval I,(g) about
y 24 A(t). If the intersection is nonempty, then in correspondence with the
statistical dating procedure, we declare the moment ¢ to be a possible date of
compilation of the catalog. The set of all such ¢ is the interval of admissible
dates.

Figure 7.24 visualizes this construction. The domain {(¢,y) : y € Si(@)}
with @« = 10/ is dotted, and the similar domain with « = 15’ is blank (we will
use it below). The graph of y 29 4(t) we have constructed in Chapter 6 (see
Figure 6.8), and the lengths of confidence intervals I, (¢) may be found in
Table 6.3.

It follows from Figure 7.24 that for all ¢ < 0.1, the interval of admissible
dates is the same, 6 <t < 13 (600 AD-1300 AD).

4. The comparatively large length of the ensuing interval may be ex-
plained in several ways. First of all, the accuracy of the catalog is comparatively
low: the latitude of the fastest among the eight stars of the informative kernel
(Arcturus) varies by the 10’ in approximately 260 years.

Another reason is that in our calculations we only used confidence intervals
for the component y of the group error, minimizing A(t, y, ¢) over all possible
values of ¢ (see (1) and (2)). Clearly, this approach leads to an expansion of
the interval of admissible dates. Indeed, if we could think of ¢ as a group error,
then we would have to choose the value for ¢ from its confidence interval,
which would raise the value of ngn D(t, y, ¢), hence would narrow the interval

of admissible dates. However, we have no grounds to treat ¢ as a group error
in the collections of stars in question.
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Figures 7.6 through 7.23. The minimax dewviation A(t, y, ¢) dependence on the a prion
date ¢ and the parameters of the systematic error y and ¢ At fixed ¢ the rectangular con-
fidence neighborhood of the point (ystza’{l A, <ps{‘;§‘ 4(t)) (marked bold) in the plane with the
coordinates (y, ¢) 1s shown The crosshatched domains are the sets of the parameters that
lead to the mimimax latitudinal deviation below 10’ The domains where the dewviation i1s be-
low 15’ are hatched, and those with the deviation below 20’ are dotted The values of ¢ for
which the crosshatched domains are not void constitute the interval of admissible dates for
the catalog The figures cover the intervals 100-1800 AD
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4. Analysis of stability of the statistical dating procedure

1. Since some parameters that determined processing data in the above
procedure were chosen quite arbitrarily, and some others were found from
statistical methods, we need to check stability of the ensuing dating interval
with respect to variations of these parameters.

2. The confidence level ¢ is generally chosen arbitrarily. Recall that in
statistics the sense of ¢ is the probability of a mistake; thus, ¢ = 0.1 means
that we admit a mistake with the probability 0.1. The less is ¢, the wider is the
confidence interval. The dependence of the length of the confidence interval
on ¢ was studied in Chapters 5 and 6, see, in particular, Table 6.3.

We have already noted that the dating interval is the same at all ¢ < 0.1; this
statement follows from the position of the intervals S, (10'); see Figure 7.24.

What if we choose another level of claimed accuracy «? Letustake o = 15
(the blank domain in Figure 7.24). Of course, the interval of admissible dates
expands; again, the upper bound of the interval does not depend on ¢ and is
equal to 3 (1600 AD). The lower bound depends but slightly on ¢: it is equal
to 16.3 (270 AD) at ¢ = 0.1, and to 16.5 (250 AD) at ¢ = 0.005.

Thus, the choice of ¢ practically does not affect the ensuing dating interval.
We have also shown how variation of the “claimed accuracy” a affects the
dating interval; namely, if we raise o from 10’ to 15’ the ensuing dating interval
does not cover the traditional epoch of Ptolemy, not to mention of Hipparchus.

3. Another to some extent arbitrary choice is the one of the informative
kernel. Indeed, we have excluded four named stars, Canopus, Vindemiatrix,
Sirius and Aquila; the first two were excluded for reasons “extrinsic” to our
investigation, but Sirius and Aquila were excluded because the group errors
for their vicinities did not coincide with the one appropriate to Zod A. We have
shown in Chapter 6 that there are at least two more stars, Lyra and Capella,
in whose vicinities the group errors may differ from the one in Zod 4; the
modality of this statement is due to the fact that we do not know the real
values of these errors. Furthermore, these two stars are far from the zodiac
and are close to the poorly measured domain M.

So let us look at what dating interval we get if we exclude these two stars,
thus leaving six stars in the informative kernel (Arcturus, Regulus, Antares,
Spica, Aselli and Procyon). The results of application of the dating procedure
in this case are represented in Figure 7.25, in the fashion similar to Figure 7.24.
Although the domains where the maximum latitudinal deviations do not ex-
ceed 10" and 15’ expand, the bounds of the interval of admissible dates do not
move much. Namely, the upper bounds remain unaltered (both for 10’ and
15’ levels), the lower bound of the interval for « = 15’ also remains the same,
and the lower bound for « = 10’ moves to the past by at most 100 years (the
particular variation depends on the confidence level 1 — ¢).
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Figures 7.6 through 7.23. The minimax deviation A(¢, y, ¢) dependence on the a prion
date + and the parameters of the systematic error y and ¢ At fixed ¢ the rectangular con-
fidence neighborhood of the point (24 4(1), 9224 4(t)) (marked bold) in the plane with the
coordinates (y, ¢) is shown The crosshatched domains are the sets of the parameters that
lead to the minimax latitudinal deviation below 10’ The domains where the deviation is be-
low 15’ are hatched, and those with the deviation below 20’ are dotted The values of ¢ for
which the crosshatched domains are not void constitute the interval of admissible dates for
the catalog The figures cover the intervals 100-1800 AD
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Thus, if we only take into account the six named stars, we must conclude
that the catalog of the Almagest could not have been compiled before 500 AD.

4. 'We must also consider the possibility that the proposed dating interval
is in fact generated by the motion of a single star; in this case any distortion
in the coordinates of such a star could distort gravely the dating interval.
The only candidate for such domination is Arcturus, the fastest star in the
informative kernel, whose vicinity, by the way, is not very well measured (see
Chapter 6). Let us find the dating interval that ensues after exclusion of
Arcturus from the informative kernel. Of course, the length of the dating
interval must increase (roughly speaking, it is inversely proportional to the
maximum velocity of stars in the informative kernel). Figure 7.26 displays the
ensuing picture. It is obvious from this figure that even after the exclusion
of Arcturus the lower bound of the dating interval for « = 10’ is not below
300 AD (¢t = 16) if we admit € > 0.05, and only at ¢ < 0.01 does the interval
capture 200 AD. Thus, even in the worst case, the interval does not capture
Ptolemy’s epoch.

At ¢ = 15, the dating interval reaches 100 BC (¢t = 20) at ¢ > 0.05 and
200 BC at ¢ < 0.01. In this case, Hipparchus’ epoch is out of possible dates.
It seems only relevant to make the following remark: the level ¢ = 0.05
represents a fairly high precision for historical investigations; in fact, this
confidence level is characteristic for technical applications. For comparison,
the confidence level chosen in Ref. 27 is 0.8 (¢ = 0.2). Thus, the above
conclusions are highly plausible.

Thus, neither variations of the confidence level, nor of the structure of
the informative kernel or of the claimed accuracy of the catalog alter our
main conclusion: the catalog of the Almagest was compiled much later than the
traditional epoch of Ptolemy (the 1st-2nd centuries AD).

5. Geometric dating procedure

The conclusions drawn in the previous sections are of statistical nature.
Namely, both the values of the group errors are determined with statistical
errors, and the conclusions concerning the coincidence of group errors in var-
ious constellations may be, in principle, false, though with small probability.
We have analyzed in Section 4 the stability of previously obtained results; how-
ever, in order to avoid statistically possible errors, in this section we abandon
statistics completely, and confine ourselves to purely geometric constructions.

Let us consider the “minimax latitudinal residual” of the above informative
kernel consisting of the eight named stars,

(1) 8(t) =min A(t, v, 9)
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which the crosshatched domains are not void constitute the interval of admissible dates for
the catalog The figures cover the intervals 100-1800 AD
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where the minimum is taken over all possible values of ¥ and ¢. Let us
compare this definition with (3.1). The only difference is in the range of the
parameter y: in (3.1) y ranges over the confidence interval containing g (?),
while in (1) there is no such limitation. Hence,

(2 8(t) = A()

Denote by ygeom(f) and ggeom (f) the values of the parameters that provide
the minimum value in the right side of (1). A possible ambiguity in the def-
inition of ygeom () and @geom (¢) Will lead to no confusion. The situation here
is much similar to the one we encountered in Section 3. There, lifting the
limitations on the parameter ¢ and leaving the limitations on y fixed, we ob-
tained a fairly long dating interval, the length being in no way affected by the
previously calculated statistical characteristics. We may regard ygeom(¢) and
®geom (2), Say, as the parameters that determine the conditional group error for
the informative kernel (with the condition that the catalog was compiled at
the moment ¢). It is natural to treat the set of all moments ¢ with §(t) < 10’ as
the dating interval. To find this interval, we depict in Figures 7.27-7.29 the § (¢)
dependence, for which we used (1) (the values of A(¢, y, ¢) had been found
from (3.1), and the minima were found by the exhaustive search through the
values of y and ¢), and the ygeom (f) and @geom (t) dependencies. For compari-
son, we depict in Figure 7.28 the function y,.(f) and the confidence zone (see
Section 4), as well as the set of all pairs (¢, y) such that A(z, y, ¢) < 10’ for
some ¢. The graphs show that the geometric dating procedure does not expand
the interval of admissible dates. This, in particular, corroborates the statement
that the parameters y,2¢ 4 we have found from statistics do match the group
error for the collection of the named stars as well. Moreover, this proves that
outside the temporal interval 600 AD-1300 AD the true positions of stars
never match the ones given in the Almagest so that all stars of the informative
kernel had at most 10’ latitudinal residuals.

In conclusion, we give also the dependence on ¢, the a priori date, of the
individual latitudinal residuals for the eight stars of the informative kernel at
fixed y = 20’ and ¢ = 0 (Figure 7.30). The upper envelope of the graphs is
similar to the curve depicting the dependence of the minimum residual on the
a priori date ¢ (Figure 7.25) for the most part of the temporal interval after
1 AD. This is connected with the fact that the value y = 20/ is close t0 ygeom(¢)
and ¢ = 0 is sufficiently close to ggeom () in a large part of this interval (note
that the picture is but slightly sensitive to variations of ¢). Figure 7.30 shows
for which particular stars of the informative kernel the latitudinal deviation
4(t) attains the minimax value for various a priori dates ¢. Note the concentra-
tion of zero latitudinal deviations about ¢ = 10 (900 AD) in Figure 7.30. This
value of the a priori date yields almost zero deviations of three stars of the
informative kernels at once: Arcturus (o Boo), Regulus (o Leo) and Procyon
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Figure 7.24. Statistical dating of the Almagest from the configuration of the eight named

stars Dashed lines are boundaries of confidence intervals about the optimal estmate y2¢ 4

The dotted domains correspond to minimax latitudinal deviations below 10’, and the domains
bounded by the solid ine to the deviation below 15’ The projection of the intersection of the
dotted domain with the confidence zone on the time axis is the interval of admissible dates,
600-1300 AD It 1s obvious that the interval i1s irrelevant to the choice of the confidence level

(e CM1) As for the rest of the stars, the latitudinal residuals only vanishes
for Aselli (y Can) near 1 AD

It 1s interesting to compare the concentration of zero deviations with the
fact that Arcturus and Regulus (together with Sirius) were distinguished
in antique astronomy. Thus, Arcturus, the brightest star of the Northern
hemisphere, was, apparently, the first star that received a name 1n antique
astronomy (1t was mentioned 1n the very first poetic description of the starry
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Figure 7.25. Statistical date for the Almagest from the collection of six named stars (Lyra
and Capella excluded). Notation is as in Figure 7.24. The interval of admissible dates is
practically the same.

sky, the poem of Aratus). Regulus is the star that was used as the starting point
for measurement of coordinates of the rest of the stars and planets. A special
section of the Almagest is devoted to measuring the position of Regulus.

6. Stability of the geometric dating procedure. Influence of
possible instrumental errors on the results of dating

1. The confidence level never appears in the geometric dating procedure,
so we are left to check the stability with respect to the accuracy and to the
structure of the informative kernel. The conclusions here are very similar to
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Figure 7.26. Statistical date for the Almagest from the collection of seven named stars
(Arcturus excluded). Notation is as in Figures 7.24 and 7.25. Naturally, the dating interval

expands; however, it does not cover 200 AD (not to mention 137 AD, the traditional date for
compilation of the Aimagest).

that of Section 4. Thus, increasing the accuracy level from 10’ to 15’ moves
the lower bound of the dating interval to 250 AD (like in Section 4). For the
informative kernel consisting of the six stars contained in Zod A or near, the
dating interval is wider by approximately 100 years; excluding Arcturus from
the informative kernel leads to the dating interval 200 AD-1600 AD.

Thus, in neither case does the dating interval that ensues from the
geometric dating procedure cover the epoch of Ptolemy, not to mention
Hipparchus.

In addition to these results on stability, that strengthen the results of Sec-
tion 4 (because the “geometric*interval cannot be narrower than the “statisti-
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Figure 7.27. Geometric dating procedure. Minimax latitudinal deviation dependence on
the a priori date. The interval where the graph lies below the 10’ level is the interval of
admissible dates for the AlImagest, 600—1300 AD. The interval coincides with the one obtained
from the statistical dating procedure.

cal”), let us prove the stability of the geometric dating procedure with respect
to possible instrumental errors.

The above dating method is based on the account of observer’s error in
determination of the position of the pole of the ecliptic, found from investi-
gation of all possible turns of the celestial sphere (in different terms, of all
rigid orthogonal turns of the coordinate frame). If we find a turn (which we
describe in terms of the vector of displacement of the pole, with the coor-
dinates y and ¢) that reduces the maximum latitudinal deviation (over the
informative kernel or over zodiacal stars, etc.) to below the level A (A = 10
for the Almagest), then we carry out compensation for this turn and use this
improved data for dating the catalog and drawing other conclusions.

In all the above cases, rigid turns of the celestial sphere sufficed to reduce
the maximum latitudinal deviation to the level A, thus enabling us to con-
firm the claimed accuracy of the catalog and to apply the dating procedure.
Meanwhile, the observer could use an imperfect instrument (say, an astro-
labe), with metallic rings that are not quite round, say, oblate. Furthermore,
some planes determined by the instrument and supposed to be perpendicular
may be not quite so; also, slightly different scales could be plotted along dif-
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Figure 7.28. The optimal statistical estimate yy.;(t) and the optimal geometric value
Yzeom(t) dependencies on the a priori date. The dashed lines bound the confidence zone;
the dotted domain corresponds to the latitudinal deviation below 10'.

ferent axes. Thus, the instrument (and the coordinate frame it determines)
could be subject to a transformation, which could distort the results of mea-
surements. The natural question arises: How could minor deformations of
the instrument (and of the frame it determines) affect the results of mea-
surements? How large must the deformations be to effect substantially the
results of measurements? In this section we give complete answers to these

questions.

2. Let us formulate the problem in mathematical terms. Suppose we
are given a sphere in three-dimensional Euclidean space endowed with a
Cartesian coordinate system with the origin at the center of the sphere. The
coordinate axes determine three pairwise orthogonal coordinate planes. The
process of measurement of ecliptic coordinates of a star consists in projecting
the star to the sphere from its center (Figure 7.31). The coordinates (say,
spherical) of the projection A of the star on the sphere are treated as the
coordinates of the star, in particular, are included in the catalog. Let us
assume for simplicity that the axis Oz is directed towards the pole of the
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Figure 7.29. Geometric dating procedure. (a) The optimal geometric value y and the
corresponding minimum latitudinal deviation dependencies on the a priori date. (b) The
optimal geometric value of ¢ dependence on the a priori date.



156 DATING THE STAR CATALOG OF THE ALMAGEST

30' ¢ g/ 1%
N
A\ Q//
zéé Ay
“1 N t 20
S
\,Ofooyo
= e - = N\\ates 3
10.“___?_1/?9_3 ------ R g; hs€ o
469 - ‘» —bg-,- —
RegU/Us " ‘ 1 49 ? Aﬁg
222 = Capella ‘
%2 i — 510
) ‘W ‘\'7 222 t
25 20 15 10 5 P
600 BC 100 BC 400 AD 900 AD 1400 AD

Figure 7.30. Individual latitudinal deviations of the eight named stars of the Aimagest de-
pendencies on the a priori date at ¢ fixed parameters of the systematic error g = (', y =21

y sphere

Figure 7.31. Measurement of ecliptic latitude of a star

ecliptic P, and the coordinate plane Oxy bisects the sphere along the ecliptic.
Since latitudes are more reliable data (see the discussion hereof above), we
will only consider the latitude of the star A. The latitude is measured along
the meridian through the pole of the ecliptic P and the point 4; zero latitude
corresponds to the ecliptic. In Figure 7.31, the ecliptic latitude of the star A4
is measured by the length of the arc 4B.
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Measurement of stellar coordinates implies the assumption that the ob-
server’s instrument determines an ideal spherical coordinate system in the
three-dimensional space. However, the real instrument may be slightly de-
formed. Neglecting the second-order infinitesimal effects, we may assume
that the deformation results in a linear transformation of the Euclidean co-
ordinate system,; it is natural to assume that the transformation is close to the
identity transformation, because a too large deformation of the instrument
would have been noted by the observer who claimed, say, the 10’-accuracy
of measurement. Furthermore, even if the deformation of the coordinate
system involves small nonlinear perturbations, we may consider the first ap-
proximation, that is, the linear approximation of the distortions.

A linear transformation of the three-dimensional space (fixing the origin)
is determined by a 3 x 3-matrix

Ci1 €12 (13
(1) C=|ca c2 3

€31 C32 (33

The transformation distorts the original Euclidean coordinate system; it
follows from elementary theory of quadratic forms that a nondegenerate
linear transformation takes the sphere to an ellipsoid (Figure 7.32). Thus,
although the original coordinate axes are taken to some lines that need not
be orthogonal, the three axes of the ellipsoid are orthogonal (the lines x’, y’,
2 in Figure 7.32). Thus, we may assume that the transformation first turns
the sphere, taking the axes x, y, z to the axes x', y, 2 (an orthogonal trans-
formation), and then dilates along the three axes with some coefficients A,
A2, A3. The latter transformation is determined by the diagonal matrix

A 000
2) R= ( 0 A O ) = diag(A1, A2, A3)
0 0 A;

The dilation coefficients A;, A», A3 are some real numbers; from the sense of
our problem, they are all positive.

3. We have already investigated in the previous sections the deformations
due to turns of the coordinate frame, so now we may focus our attention at
the second transformation, the dilation determined by the matrix R.

Thus, we may assume without loss of generality that the deformation of
the instrument, inducing the linear transformation of the three-dimensional
Euclidean coordinate frame in space, is determined by the dilation R with
coefficients A1, A2, A3. Note that the three coefficients may be more than 1,
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Figure 7.32. Variation of the coordinate frame due to a small deformation of the astronomic
instrument.

equal to 1, or less than 1 (independently of each other), so as we speak of
dilation, we do not necessarily mean an actual dilation (increase of linear size
along an axis); if a coefficient is less than 1, we in fact deal with a contraction
along the corresponding axis.

4. Letusnow discuss in more details the measurement of coordinates of a
star in the distorted coordinate system, which we will call ellipsoidal. Consider
the plane through the center O, the star A and the pole of the ecliptic P.
The plane bisects the ellipsoid along an ellipse, depicted in Figure 7.33 by a
solid line. The section of the celestial sphere (which we in fact cannot treat
as an ideal sphere corresponding to an ideal, not deformed instrument) is
depicted in Figure 7.33 by the dashed circumference. We are only interested
in latitudes, so recall that the latitudes are counted from the ecliptic, that is,
from the point M in Figure 7.33. The observer divided the arc M P’ into 90
equal parts, thus graduating the ring (the ellipse). Since he graduated the
ellipse, but not a circumference, the uniform (in length) divisions represent
slightly distorted angles; the resulting angular division is not uniform (which
is left unnoticed by the observer, for otherwise he would have corrected the
division).

Observing the star A4, the observer marks the position A’ in his ellipsoidal
instrument and measures the arc 4’ M, thus obtaining the latitude of the star
(true as he thinks), and writes it down in the catalog; of course, the catalog
is compiled under the assumption that the instrument is ideal, so the coordi-
nate written therein is supposed to be plotted along the ideal circumference
(in Figure 7.33, the arc A” M). Thus, the observer displaces the position of the
star. The ensuing transformation of the circumference 4 — A" is, of course,
not linear. It may be extended to a transformation of the whole space onto
itself (fixing the origin). Since we have fixed that the deformation of the instru-
ment is small, we may confine ourselves to linear approximation, and consider
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Figure 7.33. Deformation ellipsoid.

the linear component of the transformation instead of the transformation it-
self. This linear part is the dilation along the three pairwise orthogonal axes
with the coefficients A1, A2, A3. Thus, we come back to the statement of
the problem as in Subsections 2 and 3 of this section (actually, we have also
computed the exact distortions introduced by the nonlinear transformation,
though we do not adduce the results here).

5. Thus, we consider the linear transformation of the three-dimensional
space determined by three coefficients A, A2, A3, that is, by the matrix R =
diag(A1, A2, A3). How can we estimate the ensuing distortion of the angles?
Let ¢ be the true value of latitude of a star and ¢’ be the value obtained
from measurement with the help of the deformed instrument; the difference
Ay = ¥’ — ¢ is an estimate for the distortion. From the geometric point of
view, the distortion of the angle is determined by the angle Ay between the
direction towards the true position of the star and the directions that reads
from the instrument.

Further, we will consider the ellipse in the two-dimensional plane (Fig-
ure 7.34). Cancelling the previous notation, let us introduce in the plane
Cartesian coordinates x, y and consider the linear transformation R =

(}61 32) determined by the coefficients A; and A, of dilation along the

axes x and y. Let a = (x, y) be the radius vector of the point in the unit cir-
cumference that determines the true position of a star 4, and b = (A1x, A2y)
be the radius vector that corresponds to the distorted position. Our aim now

is to calculate the angle Ay as a function of the true latitude ¥ and the
coefficients A; and A,.
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Figure 7.34. Distortion of stellar coordinates due to a small deformation of an astronomic
instrument.

6. By an elementary theorem of analytic geometry, cos Ay is equal to
the scalar product (a, b) divided by the length of b (of course, we assume the
radius of the circumference OM equal to 1, which we always may obtain by
an appropriate choice of scaling). Thus,

Ax? 4 Apy?

JAIx2 +53y2

3) COSAY =

Put A =A;/A2ande = A — 1. Then

M2+yr AP+ Y4yt 1+ey?
VA2x2 4+ 32 x2+y2+2ey2 +y2 /14 2ey? + £2y2

(4) cosAY =

Put m = 1/ cos Ay; clearly, m > 1. Taking the squares of both sides, we get

(5) 1+ 2ey? + 2y? = m? + 2mPey? + mPety?

Hence

©) _m-1 o 1 (w1 Y
CTTmy TN A —mynyyr T \1—ny?

Since we assume that Ay is small,

(Ay)?
2

(7 m=~1+
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SO

(AY)?
8 — 1=
(8) m—1 >
and
9) 1-my’=1-y°

Finally, at small Ay we have

(10)
o~ \/ m—1_  [m-Dm+l) | @Ay? Ay
(1 — m2y2)y? (1 —m2y)y? A=y /1=y

But y = sin ¢ (Figure 7.34), so /1 — y2 = cos . Thus, at small Ay we get

Ay 24y
(1) ®Y Siny cosy  sin2y

Now let us estimate concrete values of . Recall that A/A;, = 1 +¢,50¢
indicates the degree of distortion of the coordinate system. It is convenient
to use the values of angles in radians; we have 1° = 7 /180 and 1’ = 1°/60 ~
3.14/(60 - 180) ~ 2.9 - 1074, s0 1’ ~ 0.00029.

The above expression for ¢ shows that ¢ increases as the star approaches
the zodiac (the ecliptic) or the pole of the ecliptic, because in both cases sin 2y
approaches zero. Hence, if ¢ is “reasonably small” (that is, if the deformations
of the instrument are not visible by an unaided eye), then the latitudes of stars
near the ecliptic and near the pole are distorted but little. The distortions
are maximal for the stars remote both from the pole and the ecliptic. Now
we will give exact quantitative estimates from the concrete contents of the
star catalog of the Almagest. As is obvious from Figure 7.22, the maximum
latitudinal deviation over the informative kernel of the Almagest increases fast
to the left and to the right from the interval 700 AD-1300 AD. It is natural
to ask whether it is possible to “suppress” this latitudinal deviation, say, near
1 AD, where the Almagest is traditionally attributed to. In other words, is it
possible that a) the star catalog of the Almagest was compiled about 1 AD,
but b) the observer used a deformed instrument, which introduced errors into
the latitudes of stars; now, if we take the error into account, then will we find
the date for the catalog about 1 AD?

So, let us assume that the instrument was deformed and try to compensate
the latitudinal deviation that we have near 1 AD. It is rather large, not less
than 35’. What £ must we admit to “suppress” it?
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As we have already noted, it is hardly possible to “suppress” the latitudinal
deviation for the stars whose latitudes are near 0° or 90°, so we should try the
stars with latitudes about 30°-40°. The informative kernel contains Arcturus,
whose latitude is 31°; moreover, due to its large velocity of proper motion,
Arcturus contributes much to the maximum latitudinal deviation near 1 AD.
As Figure 7.30 shows, the individual latitudinal deviation of Arcturus near
1 AD is just about 35’. So, let us find the value of ¢ that could bring about
this deviation. The claimed accuracy of the catalog A is 10’ (see above), so
we need to lessen the latitude by about 25'. So, we need to choose ¢ so that
Ay should be equal to 25’ (in radians, Ay = 0.01). Using (11), we get

(12) e ~ 0.01/(sin 30° cos 30°) ~ 0.016

Thus, if we want the latitudinal deviation about 1 AD to be explained by a
deformation of the observational instrument, we must admit the value for ¢
about 0.016. But this value for ¢ is too large! The fact is that if the radius
of the astrolabe was about 50 cm, then the deformation had to be as large
as to make the radius be about 51cm. So, the error in the radius had to
amount to 1 cm! It appears absolutely impossible to admit this error for an
astronomic instrument; otherwise we will have to admit that in the times of
Ptolemy cartwheels were manufactured with higher accuracy than astrolabe
rings.

7. Our conclusion is that no reasonable instrumental errors may explain
the latitudinal deviation that arises near 1 AD for the informative kernel of
the Almagest. So, the above results (including the dating interval for the
Almagest, 700 AD-1300 AD) are stable with respect to reasonably admissible
deformations of the observational instrument. In particular, no reasonable
assumption about deformation of the instrument may lead to the date for the
catalog about 1 AD.

7. Behavior of longitudes

We based our dating method on an analysis of ecliptic latitudes alone,
the reasons for which we have been explained above. Nonetheless, we have
carried out similar calculation (not much, in fact) for the dynamics of longi-
tudes. The calculation showed that no refinement for the date of compilation
of the Almagest within the interval 100 BC-1900 AD can be obtained from
longitudes.

Denote by L; (¢, y, ¢) the value of the longitude of the ith star after the turn
of the celestial sphere through the angles y and ¢, that is, after compensation
for the systematic error determined by the parameters y and ¢. In order to
improve the accuracy of our conclusions, we consider six named stars that lie
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in the domain Zod Aand near: Arcturus, Regulus, Antares, Spica, Aselli and
Procyon. We have seen that for these stars, the group error is reliably equal
to y 24 4, Letus find L;(t, y 2% 4, p2¢ 4) for these stars, treating these as the
latitudes of the stars at the moment ¢ after compensation for the systematic
error. Of course, in doing so we leave room for an error, and not a small
error. There are at least two possible reasons for that. First, the parameter
¢ affects strongly the values of longitudes; meanwhile, as we have seen, this
parameter is not determined stably, so we cannot be sure that the same value
of this parameter is appropriate to all the six stars. Second, we did not analyze
group longitudinal errors, which also can exist; see Ref. 22. An investigation
of such errors requires introducing one more parameter to determine the
group error. We can use as such the parameter t (see Chapter 3), the angle
of turn of the celestial sphere about the new poles of the ecliptic determined
by the parameters y and ¢.
Put

(1) AL;(t) = Li(t, y22 A1), 924 A1) - I;

We may represent A L;(¢) as the sum of an “almost linear” function (variation
of longitudes due to precession) and an irregular addend due to various errors.
In order to eliminate the effect of precession and of the possible systematic
error t, let us define

__ 18
(2) AL(t) = < ; AL;(t)

This quantity reflects practically precisely the effect of precession; put also
3) AL}(t) = AL;(t) — AL()

Figure 7.35 exhibits variation of AL;(¢) for each of the six stars (Baily’s
numbers are given in the figure: 110 for Arcturus, 469 for Regulus, 848 for
Procyon, 553 for Antares, 510 for Spica, 452 for Aselli). It is obvious from the
figure that the functions AL;(¢) vary very slowly with time. It turns out that
after compensation for precession, the fast stars become slow (in longitudes);
for example, the compensated longitudinal velocities of Arcturus and Regulus
are almost equal. The fastest star is now Procyon, whose longitude varies by
17" in 3000 years (from 1100 BC to 1900 AD). Clearly, this sluggish variation
is hardly useful for dating purposes. Figure 7.36 exposes two graphs that, in
principle, could be useful for dating, but the form of which shows that they
are not. Namely, we consider two functions,

4) A Lmax (f) = max ALY ()]
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Figure 7.35. Behavior of longitudes of six named stars, Arcturus, Regulus, Procyon,
Antares, Spica, and Aselli.

the maximum (in absolute value) deviation of true longitudes from the ones
given in the Almagest (after compensation for precession), and

5) AL (t) = max ALY(t) — min ALY(¢)

the difference between the maximum and the minimum deviations. The
function ALpa(¢) attains its maximum value at t = 15 (400 AD), and
AL%(t) at t = 32.5 (2350 BC). Both functions are comparatively large:
AL°(t) > 25' (and starting with the epoch of Hipparchus, AL%(¢) > 30),
and A Lpa(t) > 17'.

Thus, our investigation leads to the conclusion that using longitudes for
dating the catalog is apparently senseless.

8. Behavior of angular deviations in the configuration formed
by the informative kernel

We have discussed in Chapter 3 the possibility of dating the catalog from
a comparative analysis of two stellar configurations, the one fixed in the
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Figure 7.36. Two characteristics of longitudinal errors dependencies on the a priori dates.
It follows that the collection of longitudes given in the Almagest is of little use for dating
purposes.

Almagest and the moving true configuration. This comparison may be car-
ried out without use of Newcomb’s theory, just from differences of angular
distances in the configurations. We have revealed the following difficulties
that hinder application of this approach: possible mistakes in identification
of stars, low accuracy of coordinates in the catalog that leads to too long dat-
ing intervals, and the impossibility of separating well-measured and poorly
measured coordinates (say, latitudes and longitudes).

The choice of the configuration formed by the stars in the informative
kernel of the catalog lifts the first two obstacles. Indeed, identification of
named stars raises no doubts, and in accordance with our basic assumption,
the accuracy of measurement of their coordinates must be sufficiently high (at
least, in what concerns latitudes). Moreover, the informative kernel includes
two fast stars, Arcturus and Procyon. Of course, the unknown accuracy of
measurement of longitudes may bring about an inaccuracy in the date which
we cannot estimate. Nevertheless, the absence of necessity to estimate group
errors characteristic for this approach makes the results of its application
interesting, although, as we have noted, we cannot estimate their accuracy.
Therefore we only present the results of calculations for the configurations
formed by the eight stars and by the six stars.
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Figure 7.37. Accuracy characteristics of the collection of the eight named stars’ dependen-
cies on the a priori date. The graphs have minima at ¢ = 14 (500 AD), and the corresponding
confidence intervals cover all the historical period. The result is in no contradiction with the
previously obtained dating interval for the Aimagest (600-1300 AD).

Let l{]’ be the angular distance between the ith and the jth stars of the
Almagest, and I}, the angular distance between the true positions of the starsin

theyeart,t =1, ..., 25. Denote by n the number of stars in the configuration
in question, and put

1) my(t) = 1) > o -1y
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Figure 7.38. Accuracy characteristics of the collection of six named stars’ (Lyra and Capella
excluded) dependencies on the a priori date. The graphs have minima that are not clear
cut and are about at ¢+ = 15 (400 AD).The corresponding confidence intervals cover all the
historical period. The result is no contradiction with the previously obtained dating interval
for the Aimagest.

and

(@) m(t) = V/my(t)

The quantity m(t) may be treated as a distance between the true stellar con-
figuration in the year ¢ and the corresponding configuration in the Almagest.
The point of minimum of the functions m;,(¢) and m(¢) should be close to the
true date of compilation of the catalog. Figure 7.37 exposes the graphs of
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my(t) and m(t) for the configuration of eight stars, and Figure 7.38 the graphs
for the configuration of six stars.

In both cases the clearly cut minimum is at ¢ = 14; here m(¢) is equal to
14’, which corresponds to the accuracy of 10’ in each coordinate. Clearly, this
date is rather far from the traditional date of compilation of the Almagest.
A certain displacement of this date to the past in comparison with the in-
terval we have obtained from the analysis of latitudes may be explained by
the fact (see Section 7 of this chapter) that the error in longitudes attains
its minimum value about ¢t = 31 (1200 BC). This date cannot be perspicu-
ously explained, but since the minimum of longitudinal deviation is not very
distinct (see Figures 7.35 and 7.36), the accuracy of these dates may amount
to several thousands years. The minimum of latitudinal deviation falls on
t = 10 (900 AD), and is much more clearly cut. As a result, the minimum of
mean square angular distance falls to an intermediate point ¢ = 14 (500 AD),

much nearer to the clearly cut minimum for latitudes than to that for
longitudes.

9. Brief conclusions

1. The dating interval that ensues from application of statistical and geo-
metric dating procedures is 600-1300 AD.

2. Before 600 AD, the true positions of stars never match the positions
given in the Almagest so that all stars in the informative kernel had latitudinal
deviations not exceeding 10'.

3. The assumption that the true accuracy of the catalog of the Almagest is
15’ but not 10’ does not expand the interval of admissible dates so as to cover
the epoch Ptolemy is traditionally attributed to (the 1st-2nd centuries AD).

4. Variations of the choice of named stars for the informative kernel also
do not lead to an interval of admissible date covering the 1st or the 2nd
centuries AD.

5. No compensation for reasonably admissible inaccuracies in manufac-
turing the observational instruments used for compilation of the catalog may
expand or move the interval of admissible dates so as to cover the 1st or the
2nd century AD.



Chapter 8
Inclination of the Ecliptic
in the AlImagest

1. Inclination of the ecliptic in the Aimagest and the
systematic error

1. The angle ¢ of inclination of the ecliptic to the equator is one of basic as-
tronomic magnitudes. The knowledge of the value of this angle is necessary for
determination of ecliptic coordinates of stars, whatever the method for find-
ing these coordinates: the use of an astrolabe (as described in the Almagest),
recalculation from equatorial coordinates with the help of a double-framed
celestial globe (as was done in Middle Ages), or any other (see Introduction
and Chapter 2).

In the text of the Almagest, the methods of measurement of the angle ¢
are discussed in details, and a description of the instruments used for this
measurement is given (Almagest, Ref. 17, Chapter 1.12). It is stated that
the measurement gives the value 11/83 of the full circle for 2¢, so in modern
notation, € 4 = 23°51'20"; here ¢ 4 is the value given in the Almagest.

As he compiled the catalog, the author of the Almagest had to use this value
of ¢, fixing it in his instrument (astrolabe, double-framed globe, etc.). Anerror
in the value of ¢ introduces a turn of all the celestial sphere through the angle
equal to the error. In other words, an inaccuracy in fixing the angle in the
astronomic instrument brings about a systematic error in the coordinates of
all stars in the catalog (more exactly, in the coordinates of the stars measured
with the help of this instrument). It is easy to see that the error affects most
the latitudes of stars. This error we have estimated in Chapter 6 as we found

169
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the values of y5.:(¢) for various ¢ and various regions of the celestial sphere.
The dependence of the error on ¢ is due to the fact that the true value of the
angle ¢ varies with ¢; this dependence is monotone and is practically linear in
the a priori dating interval 0 < ¢ < 25. The value fixed by the author of the
catalog is either more or less than the true value, so the author, as he made the
error, had either “rejuvenated” the catalog, or “made it older” with regard to
the inclination of the ecliptic to the equator. Each of the possibilities could
be realized with probability 1/2, and the first possibility did realize: the value
of ¢ given in the Almagest is equal to the true value of e(¢) for ¢ approximately
equal to 32 (1200 BC; see Chapter 6).

2. Suppose that the catalog of the Almagest was compiled in the year ¢,
and its author considered the angle of inclination of the ecliptic to be equal
to 23°51'20” (the value given in the Almagest) and tried to fix this angle in
his astronomic instrument designed for determination (from an immediate
observation or a recalculation) of ecliptic coordinates of stars. If we take
into account a possible error +Ac¢ in this fixing, determined by the accuracy
of manufacturing the instrument, then the net error in fixing the inclination
amounts to £ 4 — £(¢) &+ Ae = 23°51'20” — e(¢) + Ae. Let us compare this with
the confidence zone y,¢(f) £ Ay for the systematic error y found in Chapter 6
and with the set of all values of y for which a matching configuration of the
six stars of the informative kernel of the Almagest with the corresponding
true configuration is possible within 10’ latitudinal deviation (the latter set
is empty unless 6 < ¢ < 12; see Chapter 7). As yuat(?), we take the values
determined for Zod A, because, as we have noted, the confidence zone for
systematic error y for this domain is narrower than in other parts of the
catalog; furthermore, all stars of the informative kernel lie either in Zod Aor
immediately near it (see Chapter 7).

Figure 8.1 shows the confidence zone yg(f) + Ay for the domain Zod A
with the confidence level 0.002, the set of admissible values ygeom(#) from
the geometrical dating procedure (that is, the set of all values for which the
maximum latitudinal deviation of stars in the informative kernel does not
exceed 10’, see Chapter 7), and the graph of dependence of deviation of
the value ¢ 4, for ¢ given in the Almagest, from the true value in the year ¢:
Yam() = €4 — e(t). It is obvious from Figure 8.1 that the graph of yaim(?)
is close to the “geometrically admissible” domain (y, f)geom and to the con-
fidence zone about yg,(2), although it does not meet them. In order that
they intersect, it is necessary to displace the graph yam(¢) by 2!5 upwards;
then the graph will intersect both the confidence zone and the “geometrically
admissible” domain, which is nearer to the lower edge of the confidence zone
(see Figure 8.1). After the displacement by 6.5 upwards, the graph of yaim ()
practically coincides with the graph of yg.:(f) dependence, still intersecting
with the “geometrically admissible” domain. The necessary displacement cor-
responds to the error A¢ in fixing ¢ 4, and gives an idea of the accuracy with
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Figure 8.1. Confidence zone for y4.: () and the difference between the true value of incli-
nation of the ecliptic and the value given in the Aimagest dependence on the a priori date.
The hatched domain correspond to the minimum latitudinal deviations below 10’.

Table 8.1.
Radius
Angle 50cm 75cm 1m
360° 3mld4cm 4m71lcm 6m 28 cm
530" 0.4 mm 0.5mm 0.7 mm
10 1.5mm 2.2mm 2.9mm
1° 8.7mm 13.0mm 17.5mm

which the instrument had been manufactured. Table 8.1 contains the lengths
of arcs subtending the angles 2!5, 5" and 10’ with the radius of the instrument
equal to 50 cm, 75 cm, or 1 m.

It is obvious from Table 8.1 that the error Ae = 25 + 5’ in fixing the angle
¢ in the instrument is quite relevant not only for antiquity, but even for the
Middle Ages; it corresponds to as small a linear error as 0.5 +~ 1 mm.
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Thus, the values of inclination of the ecliptic that correspond to the previ-

ously determined group errors agree with the value of the angle given in the
Almagest.

2. Zodiac in the Aimagest and the Peters’ sine curve

1. Intheliterature devoted to the Almagest, the so-called Peters’ sine curve
is known (see Ref. 22, p. 6), which implies the presence of certain systematic

errors in the catalog of the Almagest. In this section we suggest an explanation
for this sine curve.

2. Let I be the position of the ecliptic at ¢ = 18, that is, in 100 AD; mark
the spring equinoctial point Q(18) on I1.

Let us calculate for each of 350 zodiacal stars of the Almagest its latitudinal
deviation and depict it in the graph; we plot the longitudes of stars along
the horizontal axis and the latitudinal deviations along the vertical axis. As
a result, we obtain a collection of points in the plane, which we call the field
of (latitudinal) errors. Dividing the axis of longitudes into 10° long intervals
and averaging in each interval, we construct the smoothing curve, shown in
Figure 8.2. This curve may be approximated (according to minimum mean
square deviation) by a sine curve, called Peters’ sine curve.

A similar procedure may be applied to longitudinal deviations; the resulting
curve is the dashed line in Figure 8.2. We will discuss this curve further.
Figure 8.2 is taken from the Ref. 22.

Our aim is to give explanation for the form of these curves.

3. We begin with the latitudinal Peters’ curve. There is a natural cause
for systematic errors in latitudes of zodiacal stars, the error in the position of
the ecliptic used by the observer in relation to the true position in the year of
observations (which we a priori do not know).

Let us construct the above fields of latitudinal errors for each moment ¢,
(Figure 8.3). The smoothing curve of averaged errors (the dashed line in
Figure 8.3) we denote by c(X, K(%, 0, 0)); here X stands for the catalog of
the Almagest and K (¢, B, y) is the computed catalog of true positions of stars
in the year ¢ disturbed by the systematic error with the parameters g and y
(see Chapter 6). Thus, K(t, 0, 0) is the catalog of true stellar positions in the
year ty.

As described in Chapter 6, in order to find the turn of the ecliptic bringing
about the field of errors nearest to the given one (in the sense of mean square
error), we need to solve a regression problem, using the two-parametric family
of sine curves as an approximation. The first parameter is the amplitude of
a sine curve, and the second is the phase. In Chapter 6, we have solved this
problem for the catalog of the Almagest as a whole, as well as for various
parts of the catalog, in particular, for the zodiacal domains, in which we
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Figure 8.2. Latitudinal and longitudinal smoothing Peters’ curves for 100 AD
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Figure 8.3. Lattudinal and approximating sine curves for the field of latitudinal errors

are interested at the moment. We denote the optimal approximating sine
curve (solid line in Figure 8.3) by s(X, K(%, 0, 0)), and the parameters that
determine it by 4* (the amplitude) and ¢* (the phase; see Figure 8.3).

4. We should discuss the notion of the phase of the approximating sine
curve. The fact is that the phase is only determined with accuracy within
plus or minus 15° (at least). Figure 8.4 shows the true equator at the mo-
ment %, which (as was explained above) may be treated as coincident with
the observer’s equator, the true ecliptic in the year ¢, and the position of
the ecliptic assumed by the observer. We know that the angle the observer’s
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true equator
~ observer's equator

-

Figure 8.4. Geometric sense of the phase ¢ of the approximating sine curve.

ecliptic makes with the true ecliptic is about 20’ (the observer’s error y). The
angle between the equator and the ecliptic is €, about 23°; it is not important,
which of the two ecliptics is meant here, because the angle between them is
small in relation to 23°. The arc in Figure 8.4 depicts the observer’s error in
the position of the spring equinoctial point; as we know, this error is about 10'.
In this case, the arc distance W Q is about 10’ - sin 20°, that is, about 5'. There-
fore, the arc distance ¢ (the arc M Q in Figure 8.4) is approximately 5’ - cot 20/,
that is, about 15°. We are left to observe that the arc M Q is exactly the phase
of the approximating sine curve (we count the phase of the sine curve from
the spring equinoctial point Q(¢) in the true ecliptic IT(¢)).

So, several minutes’ perturbations in determination of the ecliptic generate
several degrees’ perturbations of the phase of the approximating sine curve; thus,
the phase is unstable.

5. In the previous sections, we have estimated the interval of ad-
missible dates for the catalog of the Almagest: ¢ is between 6 and 13
(600 AD-1300 AD). Therefore, a study of the approximating sine curves
s(X, K(#, 0, 0)) is especially interesting for # ranging in this interval. It turns
out that the curves for # in the interval vary but little; more precisely, the
amplitudes A* vary from 26’ (at £, = 6) to 20’ (at £ = 13), and the phase
¢* varies from —17° to —18° (counted from the appropriate equinoctial
point Q(¢) in the ecliptic I1(¢)). Therefore, we may choose as “typical” any
smoothing curve c(X, K(#, 0, 0)) with 6 < ¢ < 13; it is natural to take as such
the curve with # = 9, the midpoint of the interval.

Let us look at the smoothing curve at ¢y = 9 before and after subtracting
the approximating sine curve (that is, before and after compensation for the
systematic error). The parameters of the optimal sine curve at fp = 9 are
A* = 24" and ¢* = —17°. The smoothing curve is depicted as a dashed line
in Figure 8.5. Elimination of the observer’s systematic error from the catalog
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K is equivalent to subtraction of the optimal sine curve from the smoothing
curve; as aresult, the curve of latitudinal deviations assumes the form shown in
Figure 8.5 (the solid line). The difference between the dotted and the solid curves
is obvious. The latter oscillates about the axis of abscissas and corresponds to
the zero mean observer’s error in determination of the position of the ecliptic.

6. Let us now return to the Peters’ sine curve (latitudinal). Since Peters
could omit some zodiacal stars in his calculations, we calculated anew the
graph similar to that of Peters (Figure 8.2; here ¢ = 18, which corresponds to
100 AD). In doing this, we took into account all zodiacal stars of the Almagest
except several outlies and the stars with latitudinal deviation above 1°.5. We
used the data given in Ref. 22.

The result of our calculation is shown in Figure 8.6. The figure exhibits
the field of latitudinal errors (at ¢+ = 18) for the zodiac of the Almagest. The
field is represented by 350 points dispersed in the coordinate plane. The solid
line is the smoothing curve ¢(X, K(18, 0, 0)). It is obvious that the curve is
qualitatively similar to the Peters’ curve in Figure 8.2; however, there are cer-
tain (not large) distinctions, apparently due to criteria of selection of zodiacal
stars used by Peters, which we do not know.

The dashed line in Figure 8.6 represents the optimal approximating sine
curve s(X, K(18, 0, 0)), with the amplitude 16’ and the phase —22° (cf. Chap-
ter 6).

7. Above, we studied the properties of the field of latitudinal errors in
relation to the true year of observations #,. Let us now consider the field of
latitudinal errors for an arbitrary ¢. The field of latitudinal errors in relation
to the ecliptic T1(t) is approximated by a sum of two sine curves. The first sine
curve is due to the observer’s error in the year ¢, ; we have discussed it above.
Its phase counted from the spring equinoctial point Q(¢) (in the ecliptic I(¢))
is the sum (approximately) of its phase in relation to the spring equinoctial
point Q(ty) with the precession accumulated for the time ¢ — £,.

The other sine curve, s; 4, is due to the deviation of the ecliptic I1(¢) from
the ecliptic I1(#); its amplitude is approximately equal to 47" - (¢ — #p).

Thus, stating it a bit roughly, we may say that the sine curve of Peters’ type
for the year t is approximately the sum of the Peters’ type sine curve for the year t;
and the sine curve due to the turn of the ecliptic for the time t — t, (in the interval
of time from t to tp). This is a general statement, valid for all pairs of  and #;.

8. Let us now look at what approximating curve must result for ¢ = 18
(100 AD). As we have seen, we should sum up two sine curves. The first of
them corresponds to the true year of observations fy, and the second to the
year ¢ for which we calculate the resulting approximating curve. We take as
the “true year of observations” the value fp = 9 (approximately 1000 AD), the
midpoint of the interval of admissible dates 6 < ¢ < 13 (600 AD-1300 AD) we
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Figure 8.7. How the Peters’ sine curve emerges: it is the sum of two sine curves.

have found above. The first sine curve (the dashed line in Figure 8.7) has the
amplitude 24’ and the phase —5° (in relation to the spring equinoctial point of
100 AD). The second sine curve (thin solid line in Figure 8.7) corresponds to
the choice ¢t = 18 (100 AD, see above); its amplitude is approximately equal
to 7' (= 47" -9), and the phase is approximately equal to 160° (see Chapter 1).
Summing the two sine curves, we obtain the resulting approximating curve,
shown in Figure 8.7 as a bold solid line—this is the Peters’ sine curve.

9. In conclusion, we turn to the “longitudinal Peters’ curve” (dashed line
in Figure 8.2). The above mechanism explains the “latitudinal sine curve”,
but, as is easy to see, it affects but little the longitudes of zodiacal stars, so the
observer’s error in determination of the position of the ecliptic does not imply
the appearance of a notable longitudinal sine curve (although a curve with a
very small amplitude may arise). Aswe have noted many times, the longitudes
given in the Almagest are, apparently, not the original material, but the result
of a recalculation (see, in particular, Ref. 1), so we based our study on the
latitudes of the Almagest alone. Nonetheless, we will suggest a possible simple
explanation for the longitudinal Peters’ curve. Suppose that the observer had
determined inaccurately the positions of the spring and fall equinoctial points,
or, which is, in fact, the same, determined inaccurately the coordinates of the
reference stars (note that the latitudes were counted from the ecliptic ring
of the astronomic instrument, which was fixed with the never varying error,
while the longitudes of stars were measured from various reference stars—
otherwise the observer would have to measure angles that exceed 180°, which
is extremely inconvenient—Al/magest, Chapters VIL.3, VIL.4). An inaccuracy
in measurement of the equinoctial points results in actual division of the
ecliptic into two unequal parts by the points Q(#y) and R (%) (Figure 8.8); here
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The curve of
longitudinal deviations

Figure 8.8. Explanation of longitudinal Peters’ curve.

R/ () is the (erroneously) measured position of, say, the fall equinoctial point,
and R(¢) is the true position. The length of the arc may not be large, about
10'-15’, that is, within the accuracy of the Almagest; longitudes of some of the
stars could be measured with reference to the spring equinoctial point Q (that
is, with some reference stars), and the longitudes of the other with reference
to the fall equinoctial point R’ (that is, with reference to other reference
stars). As a result, the measured longitudes of stars in the interval OmR’ will
be approximately 15’ less, and in the interval On R’ will be approximately 15’
more than the true ones. Therefore, plotting the longitudinal deviations of
zodiacal stars, we obtain a sine-like curve (Figure 8.8). Note that the 1015
large error in longitudes is comparatively small, and this is the amplitude of
the longitudinal Peters’ curve in Figure 8.2.



Chapter 9
Dating Other

Medieval Catalogs

1. Introduction

In the previous chapters we have described a method of statistical analysis
for dating ancient star catalogs and applied it to dating the catalog of the
Almagest. It appears to be of interest to apply this method to dating other star
catalogs obtained with the help of astronomic instruments of the same type as
the ones used by Ptolemy—that is, the catalogs compiled from observations
by an unaided eye.

We applied our method to the catalogs of Ulugh Beg, Al Siifi, Tycho Brahe,
and Hevelius. The catalog of Al Sufi turned out to be a version of the catalog
of the Almagest (this has been noted by some researchers, see Ref. 22, p. 7).
Apparently, no detailed statistical analysis of coordinates (latitudes) of stars
in the catalogs of Ulugh Beg, Tycho Brahe and Hevelius has been carried out
before. The analysis showed that the accuracy of the catalogs is actually much
lower than was accepted (see below); this difference is especially large for the
catalog of Hevelius (100-200 times).

We found the dates for the catalogs of Tycho Brahe and Ulugh Beg. The
date of observations of Tycho Brahe is known well, and the agreement of our
date with this known date corroborates our method. In the case of Ulugh Beg,
the interval of admissible dates we have obtained also covers the traditionally
accepted date of compilation, 1437 AD. The interval overlaps strongly the
interval of admissible dates for the catalog of the Almagest (see Section 3),
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and the two catalog have similar accuracies, so it may happen that the dates
of compilation of the two catalogs are near.

2. Catalog of Tycho Brahe

1. General characteristics of the catalog and the results of dating.

We took for our study Kepler’s 1628 edition of the catalog of Tycho Brahe
reprinted in Ref. 28. The catalog is reduced for precession to 1600 AD. The
structure of the catalog is similar to that of the catalog of the Almagest; even
the enumeration of constellations is exactly as in the Almagest (except several
constellations in the end of the catalog of the Almagest, absent in the catalog
of Tycho Brahe). The total number of stars in the catalog is 1005. Basi-
cally, construction of the instruments used by Tycho Brahe is similar to that
used in the times of Ptolemy, therefore, despite numerous improvements and
high accuracy of manufacturing observational instruments, the accuracy of
Brahe’s measurements, 2’ to 3/, is comparable to the accuracy of the Almagest
(10’-15'); a sharp improvement of accuracy followed due to the invention of
telescopes.

It is known that Tycho Brahe carried out his observations in 1570-1600.
As we date the catalog independently of the known dates, just on the basis
of astronomic data given therein alone, we demonstrate the effectiveness of
the suggested dating method in the problem with the known answer. The
dating interval we obtained is 1510-1620; it is 110 years long and it covers
the true date. Note that the length of the interval is six times less than the
dating interval for the Almagest (approximately 700 years long), because the
accuracy of observation here is 5 to 6 times better than that in the Almagest.

2. Analysis of latitudinal errors and deleting outlies.

For the same reasons as in the case of the Almagest, we only used latitudes
of stars as we analyzed and dated the catalog of Tycho Brahe; we used the
identifications of stars of the catalog given in Ref. 28.

There is a hypothesis that Brahe had in fact observed only 800 of 1005 stars
included in the catalog (see Ref. 28, p. 126). In this case, the data contained in
the catalog are not homogeneous. In order to educe the homogeneous part
of the catalog, we constructed the histograms of frequencies of latitudinal
errors separately for each of the domains 4, Zod A, B, Zod B, C, D and
M distinguished in Section 2.3. We calculated the ecliptic coordinates of
stars for 1600 (that is, the catalog K(¢) for ¢t = 3, see Section 1.5), and then
compared the latitudes given in the catalog with the computed true latitudes.
The histograms of frequencies of occurrence of errors are displayed in Figures
9.1-9.7; the scale of errors is plotted along the horizontal axis, and the value
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Figure 9.1. Histograms of frequencies of latitudinal deviations in Tycho Brahe’s catalog for
stars in the domain A The a prion date 1s 1600 AD (¢ = 3)
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Figure 9.2. Histograms of frequencies of latitudinal deviations in Tycho Brahe's catalog for
stars in the domain Zod A. The a prion date 1s 1600 AD (¢ = 3)
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Figure 9.3. Histograms of frequencies of latitudinal deviations in Tycho Brahe’s catalog for
stars in the domain B The a prion date 1s 1600 AD (t = 3)
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Figure 9.4. Histograms of frequencies of latitudinal deviations in Tycho Brahe’s catalog for
stars in the domain Zod B The a prion date I1s 1600 AD (t = 3)
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Figure 9.5. Histograms of frequencies of latitudinal deviations in Tycho Brahe’s catalog for
stars in the domain C The a prion date 1s 1600 AD (t = 3)

of division here is (/.5. Along the vertical, the frequency of occurrence of the
error is plotted.

It is obvious from the histograms that outlies occur among latitudinal errors
in the catalog of Tycho Brahe. If we assume that the errors in the coordinates
are normally distributed (which is natural), then approximately 15% of all
errors are outside the “38-interval”, and so are outlies. Furthermore, the
histograms are obviously displaced from zero. The displacement is about
2, which indicates that the catalog carries a systematic latitudinal error. The
parameter y that determines the error is approximately equal to 2’ (see Chap-
ter 5 for the definition of the parameters y and ¢).

In order to weed out the outlies, we excluded from our treatment the stars
in the catalog whose latitudinal errors are off the normal distribution (sepa-
rately in each of the domains 4, B, C, D and M). More exactly, we excluded
the stars in the domains 4, B and M whose latitudinal deviations are more
than 5’ or less than —7’, the stars in the domain C whose absolute values of
latitudinal deviations exceed 5’, and the stars in the domain D whose lati-
tudinal deviations are more than 4’ or less than —3’ The bounds had been
determined approximately from Figures 9.1-9.7. The total number of ex-
cluded stars is 187. The number of the remaining stars, 818, is close to 777,
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Figure 9.6. Histograms of frequencies of latitudinal deviations in Tycho Brahe’s catalog for

stars in the domain D. The a priori date is 1600 AD (t = 3).
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Figure 9.7. Frequencies of latitudinal deviations in Tycho Brahe’s catalog for stars in the
domain M. The a priori date is 1600 AD (¢ = 3).
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Figure 9.8. Optimal estimates of parameters of systematic errors dependencies on a priori
date for Brahe’s catalog in the domain A.

the number of stars which, according to a legend (see Ref. 2, p. 126) Tycho
Brahe had observed himself.

After the weeding out, we calculated the systematic errors ygsa () and
¢star () (see Chapter 5) for the remaining part of the catalog, for each of
the seven domains, for the values of ¢ from 5 (1400 AD) to 2 (1700 AD). The
results are displayed in Figures 9.8-9.14. It is obvious from the graphs that
the values of ¢ vary from domain to domain, and apparently do not corre-
spond to a systematic error. As for the parameter y, it has approximately the
same value in various domains (note that the situation with the Almagest was
similar; see Chapter 6). The graphs of yy.:(t) dependence for the domains
A, Zod A B, Zod B, C and M are close to each other (Figures 9.8-9.14).
The domain D is the only exception: the behavior of yy,, is different in this

domain (Figure 9.13). For this reason we did not use the stars in domain D
for further dating.

3. Choice of the informative kernel.

Following the suggested algorithm for dating astronomic observations, we
need to choose the informative kernel. As indicated in Ref. 3, Tycho Brahe
selected 21 stars near the zodiac and determined their equatorial coordinates
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Figure 9.9. Optimal estimates of parameters of systematic errors dependencies on a priori
date for the catalog in the domain Zod A

especially carefully (and then recalculated into ecliptic coordinates); the list
of these stars is given in Table 9.1.34

For the constellations that contain these stars, we have found the group
errors y& (1) and @G, (¢) for ¢t = 3 (see Section 6.3). We excluded the stars
of the constellations G whose group errors S, (3) differ from y2? 4(3) by
more than 2’. For the rest of the constellations, we calculated the rates of
stars whose latitudinal deviations do not exceed 1, 2’ and 3', and the mean
square latitudinal errors, before and after compensation for the systematic
error determined by y = yS,(3) and ¢ = ¢$,,(3). Similar characteristics
were also calculated after compensation for the systematic error determined
byy = 1.8’ and ¢ = 0. It turned out (see Tables 9.2-9.9) that compensation for
the systematic error for each of the constellations considered leads practically
to the same result as compensation for the systematic error computed for the
collection of the constellations as a whole. Therefore, we may assume that the
systematic error with y = y2? 4(t), ¢ = 0 is the same for all constellations.

We included in the informative kernel twelve stars (of 21) left after weeding
out, and also two fast named stars, Arcturus (@« Boo) and Procyon (o« CMi).
The third fast named star, Sirius, was not included in the informative kernel,
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Figure9.10. Optimal estimates of parameters of systematic errors dependencies on a priori
date for the catalog in the domain B

because it is in the domain D that possesses a specific systematic error (see
above). Thus, the informative kernel for the catalog of Tycho Brahe contains
14 stars: y Ari, ¢ Ari (Hamal), ¢ Tau, « Tau (Aldebaran), y Can (Aselli),
vy Leo, ¢ Leo (Regulus), y Vir, o Vir (Spica), § Oph, @ Aqu, a Pis, ¢ Boo
(Arcturus), « CMi (Procyon).

4. Dating the observations of Tycho Brahe.

As follows from Tables 9.2-9.9, the mean square latitudinal error (after
compensation for the systematic component with y = ys{g;i A1), ¢ = 0) for
the constellations that contain the stars in the informative kernel oscillates
between 1’ and 3/, and the rate of stars with individual latitudinal deviations
below 2’ is in all cases more than 50%. Following the dating algorithm sug-
gested in Chapter 7, we must put A = 2 where A is the “claimed accuracy”,
and find the temporal interval in which the latitudinal errors for all stars in the
informative kernel do not exceed A = 2'. The ensuing interval is the interval
of admissible dates for the catalog of Tycho Brahe.
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Figure9.11. Optimal estimates of parameters of systematic errors dependencies on a priori
date for the catalog in the domain Zod B.

The resulting interval is 1510 AD-1620 AD (2.8 < ¢t < 3.9). We used
the 10 year step in time; recall that ¢ is counted in centuries back from
1900 AD.

The behavior of maximum (over the informative kernel) latitudinal devi-
ation with variation of the a priori date ¢ is illustrated in Figures 9.15-9.26,
the legend of which is similar to that of Figures 7.6-7.23. The domain of
parameters (y, ¢) for which the maximum latitudinal error does not exceed 2’
is sparsely hatched, and the domain in which the maximum latitudinal error
does not exceed 2'.5 is densely hatched. It is obvious from Figures 9.15-9.26
that the increase of the level of deviation to 2'.5 expands the dating interval
only to 1490-1640 (recall that at the level 2/, the interval is 1510-1620). When
we set A = 3', we got the interval 1480-1680. Thus, similarly to that for the
Almagest, the bounds of the dating interval vary but slightly with variation
of A.

Additional calculations showed that the dating interval for the catalog of
Tycho Brahe is stable as well with respect to variations in the choice of the
informative kernel.
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Figure9.12. Optimal estimates of parameters of systematic errors dependencies on a prior
date for the catalog in the domain C

5. Conclusions.

1) The method for dating astronomic observations applied to the catalog
of Tycho Brahe produced the geometrical interval of admissible dates for the
catalog 110 years long (1510-1620 AD) that covers the lifetime of Tycho Brahe
(1546-1601). The period of observations in the observatory of Uraniborg
(1546-1601) is near the middle of this interval.

2) The interval of admissible dates for the catalog is stable with respect to
variations of the level A and in the choice of the informative kernel. After
the increase of A from 2’ to 3’ the interval extends to the interval 1480-1680,
200 years long.

3) The ensuing dating interval (110 years) is approximately six times shorter
than the interval obtained for the Almagest; this agrees with the difference
in accuracies of the two catalogs (2’ to 3’ for the catalog of Tycho Brahe in
comparison with 10’ to 15’ for the catalog of Almagest).
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Figure 9.13. Optimal estimates of parameters of systematic errors dependencies on a priori
date for the catalog in the domain D.

4) The statistical interval of admissible dates coincides with the geometrical
one for confidence levels 1 — ¢ that exceed 0.9.

3. Catalog of Ulugh Beg

1. General characteristics of the catalog and results of dating. The
catalog of Ulugh Beg is recognized as a refined version of the catalog of the
Almagestzz, based on astronomic observations undertaken in observatories
of Samarkand in the middle of the 15th century (in the reign of king Ulugh
Beg). However, as Peters and Knobel note, “ ... though in the fifteenth
century Ulugh Beg prepared a much more accurate catalogue of Ptolemy’s
stars, it never came into general use” (Ref. 22, p. 7). This is indeed a catalog
of Ptolemy’s stars: not only the collection of stars, but also the order in which
they are listed are the same in the two catalogs (with very rare exceptions). The
number of stars in the catalog of Ulugh Beg is 1019. The ecliptic longitudes
and latitudes are given to an accuracy within minutes of arc, but the real
accuracy is of course lower (research? estimated it as being about 3’ to 5).
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Figure9.14. Optimal estimates of parameters of systematic errors dependencies on a priori
date for the catalog in the domain M.

Our calculations showed that the residual variance of latitudinal errors in the
catalog is 16’.5 for Zod A, the best measured domain. Thus, the real accuracy
of the catalog is about 30’ to 35'—worse than in the Almagest!

On the other hand, the value of the systematic error y for the catalog of
Ulugh Beg is less than that for the Almagest (see Table 9.10). As a result,
the accuracy of latitudes in the original (not compensated) catalog of Ulugh
Beg is a little higher (by 5’ to 6’) than that of the Almagest. However, this
difference is immaterial in comparison with the (latitudinal) errors the two
catalogs contain in their original form. No wonder that the catalog of the
Almagest never was ousted by the catalog of Ulugh Beg.

The histogram of latitudinal errors for the catalog is displayed in Fig-
ure 9.27; the stars with latitudinal error for ¢t = 5 (1400 AD) exceeding 1°
had been weeded out before plotting this histogram.

The calculations showed also that the catalog contains borrowings from
the Almagest. Figure 9.28 shows the histogram of differences between the
latitudes of stars given in the catalog of Ulugh Beg and the ones in the Almagest
(identification of stars in the two catalogs presents no difficulties, because, as
we have noted, the two catalogs list the stars in the same order). A sharp spike
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Table 9.1.

Vo Vs magni-
1900 51900 (0.001/year; l b tude

Star (Ref.21)  (Ref.21)  (Ref.21)) (Ref.21)  (Ref. 28) (Ref. 28)
5y Ari 17480254 +18°48'21” +079 —108 Y 27°37  47°085 4
1B3aAri  2M017325.0 422°59'23" +190 —144 g 2°06'  +9°57 3
74eTau  4"22M46°5 +18°57'31” +108 —036 I 2°53 —2°36/5 3
87a Tau  4%30m10°.9 +16°18'30” +065 —189 I 4°125 —5°31 1
134 Gem 6/16m545.6 +22°33/54” +055 —112 I 29°44’  —0°5% 3
24y Gem 631M56°.1 +16°29'05” +043 —044 65 3°31' —6°485 2
78 8 Gem 74391158 +28°16'04” —627 —051 65 17°43  +6°38’ 2
43y Can 8"37M29°.9 421°49'42” —103 —043 Q 1°57 +3°08 4
41y Leo 10%14™27°.6 +20°20'51” +307 —151 Q 23°59  +8°47 2
32aLleo 10703m025.8 +12°27'22" —249 —003 Q 24°17  +0°265 1
29y Vir 12°36™35°.5  —0°54'03" —568 —008 D 40355 42050 3
67a Vir 13719m555.4 —10°38'22" —043 —033 o 18°160 —1°59 1
278Lib  15%11m37°.4  —9°00'50” —098 —023 M, 13°48'  +8°35 2
150ph 16*19m06°2 —3°26'13" —048 —145 m, 26°44'5 +17°19 3
21aSco 16h23m16°.4 —26°13'26" —007 —023 2 413 —4°27 1
390Sag 18758M415.4 —21°5317" +079 —060 B 9°28  40°59 4
53 Aqi  19745M54°2  4+8°36/15" +537 +385 B 26°09 +429°21)5 2
40 y Capr 21734m3351 —17°06'51” +188 —022 x 16°14  —2°26' 3
228 Aqu 21726m17°.7  —6°00040” +019 —005 x 17°51 +8°42 3
54a Peg 22"59Mm46°.7 +14°40°02” +062 —038 X 17°56!5 +19°26' 2
113 Pis  1556m52°.3  42°16/51” +030 000 Y 23°47'5 —9°045 3

at the zero in Figure 9.28 corresponds to the group of stars whose latitudes in
the two catalogs are exactly the same; the height of the spike leaves no place
for coincidence by chance.

Below, we obtain the geometric interval of admissible dates for the obser-
vations of Ulugh Beg. This is the interval 700 AD-1450 AD. The interval
covers the traditionally accepted date of observations of Ulugh Beg (the first
half of the 15th century). The length of the interval amounts to 650 years,
and is close to the length of the dating interval for the Almagest (600 AD-
1300 AD). This is quite natural, for the two catalogs have similar accuracy.
Note also that the dating intervals for the two catalogs overlap strongly, so it
is possible that they were compiled in approximately the same time.
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Table 9.2. Cancer (13 stars)

The rate of stars whose Residual mean
latitudinal error does not exceed square error
1 2 3 o
Initial 38% 77% 77% 24
After the turn
appropriate to
Zod A 61% 85% 92% 237
After the optimal turn
for this constellation 61% 77% 92% 231
After the turn
Table 9.3. Leo (36 stars)
The rate of stars whose Residual mean
latitudinal error does not exceed  square error
v 2 3 i
Initial 61% 83% 94% 1’41
After the turn
appropriate to
Zod A 55% 80% 94% 1/44
After the optimal turn
for this constellation 61% 83% 94% 135
After the turn
withy =y 244 ¢ =0 47% 75% 94% 163
Table 9.4. Taurus (37 stars)
The rate of stars whose Residual mean
latitudinal error does not exceed square error
1 2 3 o
Initial 76% 89% 94% 1'18
After the turn
appropriate to
Zod A 54% 92% 97% 131
After the optimal turn
for this constellation 67% 92% 94% 1117
After the turn
Zod A

withy =y244 =0  24% 62%  94% 194
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Table 9.5. Pisces (31 stars)

The rate of stars whose
latitudinal error does not exceed

Residual mean
square error

A

v 2 3 o
Initial 61% 77% 90% 181
After the turn
appropriate to
Zod A 48% 81% 90% 197
After the optimal turn
for this constellation 64% 81% 90% 1779
After the turn
withy =y 244,46 =0 45% 7% 87% 187
Table 9.6. Aquarius (34 stars)
The rate of stars whose Residual mean
latitudinal error does not exceed square error
1 2 3 o
Initial 29% 56% 76% 2'49
After the turn
appropriate to
Zod A 32% 59% 82% 223
After the optimal turn
for this constellation 35% 82% 91% 163
After the turn
withy =y 244 ¢ =0 38% 65% 91% 19

Table 9.7. Virgo (32 stars)

The rate of stars whose
latitudinal error does not exceed

Residual mean
square error

A

v 2 3 o
Initial 25% 72% 94% 1’8
After the turn
appropriate to
Zod A 34% 2% 94% 183
After the optimal turn
for this constellation 62% 91% 100% 116
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